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Abstract

Arterial stiffness is a fundamental characteristic of circulatory physiology and a well-
established predictor of cardiovascular risk and mortality. However, routine clinical
assessment remains limited by the need for dual-site measurements. To address this
challenge, we developed a machine learning algorithm — PulseAl — for automated fiducial
point detection on brachial cuff waveforms for single-site assessment of arterial stiffness.
PulseAl was trained and evaluated using a clinical dataset comprising 5,215 waveforms from
145 heterogeneous subjects. Performance was assessed on fiducial point predictions
accuracy (inflection point, t, and dicrotic notch, t,) and downstream pulse waveform
analysis (PWA) metrics. Our multi-channel convolutional neural network (PulseAl) reported
a median [IQR] on mean absolute error for fiducial point detection of 5 [3, 10] ms. PulseAl
demonstrated high accuracy in predicting t (r=0.913, p<0.0001) and t, (r=0.939, p<0.0001),
with an average prediction error of 12.6 ms and 6.2 ms for t, and t,, respectively. While the t,
results are comparable to other academic models reporting 5-10 ms errors, our approach
provides both fiducial point indices from a single model. PWA features derived from PulseAl
closely matched those derived from human-annotated labels, including systolic pressure-
time integral (r=0.988, p<0.0001), augmentation index (Alx) (r=0.990, p<0.0001), and end
systolic pressure (r=0.998, p<0.0001). Alx tertiles showed statistically significant association
with height-adjusted pulse transit time (p<0.05), used as a surrogate of arterial stiffness,
demonstrating the model's sensitivity to stiffness-related changes. These findings
demonstrate that PulseAl enables accurate fiducial point detection and represents a
clinically viable tool for automated, single-site monitoring of arterial stiffness.

Keywords
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Highlights

e Arterial stiffness is clinically valuable, but complex to assess routinely.

e PulseAl reliably detects fiducial points across diverse waveform morphologies.

e Spectral machine learning achieves comparable performance with lower
complexity.

e Alx derived from PulseAl correlates with arterial stiffness assessed via PTT.

e PulseAl enables automated, single-site arterial stiffness monitoring.
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Introduction

Despite significant advances in cardiovascular care, cardiovascular disease (CVD) remains
the leading cause of mortality in developed countries [1]. While blood pressure (BP) is a well-
established risk factor, additional markers have been shown to play a critical role in the
development and progression of CVD [2], [3], [4]. Among these, arterial stiffness has
emerged as an independent predictor of cardiovascular risk and mortality [5], [6]. Large
artery elasticity is a fundamental characteristic of circulatory physiology, helping to buffer
the pulsatile flow generated by cardiac ejection during systole [7]. Pulse wave velocity (PWV)
is a widely recognized metric for assessing arterial stiffness, calculated using the pulse
transit time (PTT) and the propagation distance between two measurement sites [8]. While
PWV is considered the gold standard for arterial stiffness assessment, its reliance on dual-
site measurement introduces practical challenges in clinical settings [9]. On one hand,
efforts have been made to estimate PWV from single-point measurements using machine
learning models, offering a potentially simpler alternative. Jin et al. developed a Gaussian
Process Regression method to estimate PWV from selected waveform features [10]. Mitchell
et al., using a deep learning approach, trained a convolutional neural network (CNN) to
predict carotid-to-femoral PWV from single, uncalibrated waveforms acquired at the radial,
brachial, or femoral sites [11]. Beyond these direct applications, machine learning is being
widely adopted in cardiology for tasks including cardiovascular risk stratification, transfer
functions, and medical image analysis, demonstrating its broad utility [12], [13], [14], [15].
On the other hand, surrogate parameters have been investigated for this purpose.
Augmentation index (Alx) has gained attention as a measure of systemic arterial stiffness
derived from a single cardiac waveform measurement [16]. However, the clinical utility of
such parameters is dependent not only on their theoretical significance but also on the
reliability and precision of their measurement [16], [17], [18].

The first key factor influencing this accuracy is the reliability of pulse waveform acquisition.
Increasing attention has been directed toward noninvasive systems such as brachial cuff
devices, due to their ease of use and improved measurement repeatability—both essential
for clinical adoption [19], [20]. In this context, suprasystolic blood pressure (sSBP)
measurements mode have gained prominence for its ability to capture detailed and feature
rich pressure waveforms [19], [21], [22], [15], [23], [14]. Beyond waveform acquisition, the
accurate identification of fiducial points along the cardiac pressure waveform remains a
critical challenge. These points correspond to key physiological events, such as the arrival
of the reflected wave and the closure of the aortic valve, typically marked by the inflection
point and the dicrotic notch, respectively. However, their morphology can vary significantly
depending on the population and study characteristics. Forinstance, the dicrotic notch may
appear as a distinct physical notch or a subtle incisura, while the inflection point can occur
either before or after the systolic peak. This variability complicates the development of
universally applicable mathematical rules for their detection, often leading researchers to
rely on manual identification or study-specific criteria. For example, Sugawara et al. used
the fourth order derivative to find the systolic inflection point [24], [25], Munir et al. used the
first order derivatives and tangents to determine the location of the inflection point [26], and
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Ueda et al. used an experienced observed to measure the inflection point [27]. To this end,
several efforts have been dedicated towards developing algorithmic approaches for
automatic identification. Saffarpour et al. developed Physiowise, a physics-aware approach
to dicrotic notch identification [28], Pal et al. pioneered an iterative envelope mean method
for detection of the dicrotic notch [29], [30], and Hoeksel et al. uses a three-element
windkessel model to estimate flow from pressure and then identify the dicrotic notch [31].
While these methods showed promising results, they only focused on a single identification
task and therefore require complementation with other methods for full detection. With the
substantial increment of healthcare dataset size, there is a growing need for
comprehensive, high-precision, and automated tools to facilitate and standardize this
process.

In this study, we assess the accuracy and generalizability of machine learning for fiducial
point detection, specifically identifying the inflection point and the dicrotic notch, using our
model, PulseAl. We train and evaluate the model on a dataset of manually labeled and
human-annotated cardiac pressure waveforms acquired from a brachial cuff system
operating in sSBP mode [32]. To benchmark its performance, we compare PulseAl’s results
against conventional mathematical methods described in the literature and use the 30 ms
reported error ranges as an acceptance criteria [28], [29]. To demonstrate the physiological
relevance of our machine learning pipeline, we have also examined the association between
arterial stiffness and Alx derived from our proposed automated algorithm. Lastly, in order to
provide a standardized and accessible platform for researchers to integrate into their own
studies, the optimized trained model of this study has been made publicly available on
GitHub.

Methods
Clinical Study Design

Brachial pressure waveforms were recorded using a custom and laboratory-developed
investigational brachial cuff device designed for high-resolution waveform acquisition [32].
The device has been previously validated against intra-arterial measurements for waveform
accuracy [33]. The device’s protocol first performed an oscillometric blood pressure
measurement for calibration, followed by pulse waveform capture using the inflate-and-
hold methodology. This methodology was applied at the sSBP hold, defined as 35 mmHg
above the systolic blood pressure (SBP), and maintained for 40 seconds.

The dataset analyzed in this study consists of brachial pressure waveforms collected during
cardiac catheterization procedures. Measurements were performed with subjects in the
supine position, and the brachial cuff was placed on the left arm following standard cuff
placement guidelines. The study enrolled individuals aged 21 years or older who were
referred for non-emergent left heart catheterization between September 2021 and
September 2022. Exclusion criteria included recent severe cardiac events (within one
week), inability to undergo routine blood pressure measurement, and contraindications to
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catheterization. Simultaneous aortic catheterization waveforms were recorded during
brachial cuff measurements to enable PTT calculations. The signals were captured at a
sampling rate of 1 kHz.

The study was approved by the Institutional Review Board of Western and Salus. Written
informed consent was obtained from all participants before the procedure. The study
adhered to the principles of the Declaration of Helsinki.

Study Population

The study population included 145 subjects with a mean age of 66 + 9 years, 88 males (61%),
and a mean body mass index (BMI) of 29.0 + 5.5 kg/m?®. Patient characteristics for the entire
study population are summarized in Table 1. The analysis generated a dataset of 5215
waveforms from the brachial cuff during the sSBP hold phase. The distribution of cardiac
cycles per individual showed a median of 37, with interquartile ranges of [30, 43] cycles per
subject, a maximum of 62, and a minimum of 2 (Figure S2). The study population was
partitioned into three cohorts at the subject level using a 70%-10%-20% train-validation-test
split, resulting in cohorts of 102, 14, and 29 subjects, and 3646, 515, and 1054 waveforms,
respectively (Figure 1B). Table S2 provides a summary of the population characteristics for
the training, validation, and test cohorts. Figure S3 shows the cumulative distribution
function of the fiducial points in the time-based format as well as the unit-normalized
configuration; the train-validation-test cohorts showed overlapping distributions for both ¢;
and t,,.

Data and Signal Preprocessing

The brachial cuff recordings were manually inspected to remove instances of apparatus
malfunction, procedural errors, saturated sensor output, and arrhythmias. The sSBP
pressure signal recordings from the brachial cuff were segmented into individual cardiac
cycles using the foot-to-foot partition method [8]. Each cardiac cycle can be represented
mathematically as,

Pm =p(t,), m=01,..,N—1. (D

Where N is the length of the cardiac cycle. This segmentation resulted in a dataset
containing multiple cardiac cycles for each subject, with each cycle treated as a unique but
dependent data point. While cycles from the same subject were considered distinct, they
were not independent due to the shared underlying physiological characteristics. Fiducial
points of interest on the pressure waveform —namely the peak pressure, inflection point and
dicrotic notch - were manually identified for the entire dataset:

t, = peak time
t; = inflection time
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t, = dicrotic notch time

These fiducial points represent key pressure waveform features: peak time corresponds to
maximal systolic pressure, the inflection time marks the arrival of the reflected wave, and
the dicrotic notch time indicates the closure of the aortic valve. The cardiac cycles along with
the fiducial points were combined to generate the dataset for the study.

Both dataset components —fiducial points and brachial cuff waveforms —were preprocessed
before being fed into the machine learning portion of the study. The fiducial points were
converted to unit-normalized quantities by dividing for the duration of the cardiac cycle,
denoted T, as shown below:

~ tn

th = — 2

n= @
This normalization ensures that the fiducial points all lie within the range [0,1], which is
optimal for an ML model output.

Brachial cuff waveforms were individually resampled to a fixed length of 1000 samples to
ensure consistent input size to the ML model. Resampling was performed using a Fourier-
based methodology along the time axis, which is outlined in Algorithm 1. Resampled
waveforms were standardized to a mean value of zero and a standard deviation of one. Upon
performing both procedures, we define these as resampled and normalized waveforms. The
first and second derivatives were computed using the finite difference method on the
resampled and normalized waveforms; interior points were computed with second-order
accurate central differences while at the boundaries we used one-sided differences to
preserve signal length. This signal preprocessing generated a dataset of waveforms - signal,
first derivative and second derivative — with fixed length, centered around zero, and a
standard deviation of one.
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Algorithm 1: Fourier-based Resampling Method
Input: waveform signal p(t), desired signal length M
Output: resampled signal p’(t)
1. Discrete Fourier Transform
Convert signal from time domain to frequency domain:

N-1
_Jj2mkm
P, = z pme N , k=01..,N—-1.
m=0

Where P, are the frequency components of the original signal, and N is the length of
the original signal

2. Frequency Domain Resampling
If M > N, apply zero-padding to the frequency components:

Pk’ k=0,,N/2
P, =10, N/2<k<M-N/2
Py, k=M-N/2,..,.M—-1
If M <N, truncate the frequency components:

PL=P, k=01,..,M—1.

3. Inverse Discrete Fourier Transform
Convert the signal back to the time domain:

,INC, mk
p}.:MZpke Mo, j=01,.,M-1.
k=0

The dataset was partitioned for standard model training and testing using a 70%-10%-20%
train-validation-test split ratio. Given the dependence of cardiac cycles within a given
subject, the split was performed at the subject level rather than the cardiac cycle level to
prevent data leakage. The training cohort was used for model training, the validation cohort
for early stopping during training, and the testing cohort for model evaluation.

PulseAl Method

The PulseAl method is a machine learning approach developed to identify fiducial points on
the cardiovascular pressure waveform. The model takes as input a single cardiac cycle and
outputs the unit-normalized indices of the fiducial points. In this model implementation, the
PulseAl method was trained to predict the relative time position of the inflection point and
the dicrotic notch for the brachial pressure waveforms in the sSBP hold. Figure 1a shows an
overview of the multi-channel convolutional neural network (CNN) model implemented for
PulseAl. The PulseAl method was optimized for predicting the fiducial points ¢t; and ¢,
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through a two-stage process: model architecture evaluation and hyperparameter tuning.
Figure S1 in the supplementary material provides an overview of the optimization approach
used in this study.

In the first stage, we evaluated four model architectures: a CNN, a multi-channel CNN
(mcCNN), a multilayer perceptron (MLP), and a Fourier-based Neural Network (fNN). At this
stage, all models used an element-wise mean-square error loss function.

The CNN model consisted of three convolutional blocks, each sequentially comprisinga 1D
convolutional layer, ReLU activation, and max pooling. The convolutional layers had 8, 16,
and 16 filters, respectively, with a kernel size of 3, a stride of 1, and padding of 1. One-
dimensional max-pooling with a kernel size of 2 and a stride of 2 was applied after each block
to progressively downsample the feature maps. The output of the final convolutional block
was flattened and passed through two fully connected layers: the first with 128 units and the
second mapping to the two output classes. The model processed a single-channel input,
representing the resampled and normalized waveform of length 1000. The mcCNN model
had the same architecture as the CNN model but processed three input channels: the
resampled and normalized waveform, its first derivative, and its second derivative, each of
length 1000. The use of derivatives was intended to capture high-frequency features
embedded within the signal shape.

The MLP model consisted of four fully connected layers, mapping an input of 1000 units to
two output units. The three hidden layers contained 128, 64, and 32 units, respectively, each
followed by a ReLU activation function and a dropout rate of 0.35. The fNN model was a fully
connected feedforward neural network operating in the frequency domain. The input signal
was first transformed into the frequency domain, truncated to retain a limited number of
modes, then flattened into its real and imaginary components before being passed into the
network. The network architecture beyond this preprocessing step was identical to the MLP
model. The model architecture that yielded the best performance was selected for
hyperparameter optimization.

The hyperparameter tuning phase focused on three key factors: loss function selection, data
augmentation, and regularization. First, we compared model performance with different
base loss functions: mean squared error (MSE), mean absolute error (MAE), and Huber loss
with 8=10 ms. A penalty term is added to each base loss function making the total loss:

Ltotal = ['base + Lpenalty (3)
The penalty term computes the average of all positive index differences between the
inflection point and dicrotic notch. This penalty effectively enforces the physiological
constraint that the inflection point occurs before the dicrotic notch.

n
1 A A
Lpenalty = Ez maX(O' Yi,O - Yi,l) (4’)
i=1
Where i€{1, ..., n} indexes the samples within the dataset.
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Next, we investigated the impact of data augmentation, generating additional training
signals by applying truncation and resampling, and scaling. Three augmentation strategies
were evaluated: (1) truncation and resampling, (2) scaling, and (3) both applied sequentially.
Finally, we explored regularization techniques, testing dropout, weight decay, and their
combined effect. At each step, the best-performing model configuration was carried forward
for further evaluation. This tuning process resulted in nine experimental scenarios, detailed
in Table S1 in the supplementary material. Figure S1 summarizes model selection and
hyperparameter tuning.

Empirical Method

The empirical method served as a reference for comparing model performance in identifying
fiducial points along the pressure waveform. This approach was used to detect both the
inflection point, t;, as well as the dicrotic notch, t,,. The inflection point was determined
using the fourth-order derivative, following the guidelines established by Takazawa et al.
[34]. The dicrotic notch was identified as the first peak of the second derivative occurring
after the minimum of the first derivative, as described by Peter et al. [35] and Takazawa et al.
[36]. The mathematical steps behind the empirical method have been summarized in
Algorithm 2.

Algorithm 2: Empirical Method for Calculating Fiducial Points
Input: waveform signal
Output: t,, t;, t, (fiducial point indices)
1. Compute Derivatives:
1.1. p(t) 41 < Vp(t) (first derivative)
1.2.p(t) g2 <« Vp(t)g2  (second derivative)
1.3.p(t) g3 « Vp(t)q2  (third derivative)
1.4.p(t)gs <« Vp(t)qs  (fourth derivative)
2. Identify Maximum Value:
2.1. t, « argmax (p(®)
3. Determine Slope at Maximum:
3.1. Sl0p6d4 < p(tmax)d4
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4. Identify Inflection Point:
If slopeyy > 0 (late systolic peak):
4.1. Identify zero-crossings of p(t) 44 (positive to negative)
If at least two zero-crossings exist before t),:
o t; < second zero-crossing of p(t) 44
Else:
o t; « None
Else (early systolic peak):
4.2. Identify zero-crossings of p(t)q4 (negative to positive)
If at least three zero-crossings exist after t,,:
o t; < third zero-crossing of p(t) 44
Else:
o t; « None
5. Identify Dicrotic Notch:

5.1. tgy min < argmin(p(t) 1)

5.2. t, < arg max (p(tdl,min: )az) + ta1min
6. Return: (t,,t;,t,)

Hemodynamic Analyses

Pressure waveforms captured with a brachial cuff system are in non-physiological units, as
they represent the pressure fluctuations inside the cuff. To convert these waveforms into
physiological units, we applied a previously validated calibration procedure using the blood
pressure values from the oscillometric measurement [33]. The waveforms were scaled such
that the peak pressure corresponds to SBP, and the base pressure corresponds to diastolic
blood pressure (DBP). The calibration equation used is:

o p(t) — min(p(t))
Pcalib = max(p(t)) — mln(p(t))

« (SBP — DBP) + DBP (5)

Where p.qiip represents the calibrated pressure waveform.

Pulse wave analysis (PWA) was performed on the calibrated waveform to extract clinically
significant parameters, including Alx, systolic pressure time integral (SPTI), and end-systolic
pressure (ESP). These parameters were computed using both the measured (human-
annotated) and PulseAl-generated fiducial points. Additionally, PTT—the foot-to-foot time
difference between the start of the waveform at the central site (captured via catheter) and
cuff waveforms—was calculated in milliseconds. PTT was further adjusted for subject height
to derive a surrogate measure of PWV, herein denoted as sPWYV, both of which serve as
indicators of arterial stiffness [8].
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p(tp) - p(ti)

—————, ift;<t,
t,) —p(t
Alx = pgt,,)) p((t )) ©)
M, otherwise
p(ty) — p(to)
tn
SPTI = f p(t) dt (7)
to
ESP = p(t,) (8)
PTT = tfoot,cath - tfoot,cuff (9)
Height
sPwy = =49 (10)

PTT

Statistical Analyses

Fiducial point prediction accuracy was evaluated in the time domain. To recover the
predicted fiducial point values, the unit-normalized predictions were multiplied by the
cardiac cycle duration and rounded to the nearest millisecond (ms). Model performance was
assessed by calculating the prediction error (true — predicted) for individual fiducial points,
as well as the mean absolute error (MAE) for joint predictions. Several metrics were used to
evaluate model accuracy, including the Pearson correlation coefficient (r), coefficient of
determination (R®), root mean squared error (RMSE), mean difference, and limits of
agreement. The prediction accuracy for fiducial points and PWA-derived parameters was
visualized using scatter plots of true-versus-predicted values and Bland-Altman analysis.
Correlation strength was quantified using r and the intraclass correlation coefficient (ICC),
along with 95% confidence intervals (95% CI). Bland-Altman analysis was also used to
assess bias and limits of agreement. Significance level was set at avalue of p < 0.05.

Results
Model Development

The PulseAl model was trained on the training cohort (3,646 cardiac cycles) with an early
stopping criterion based on the validation cohort (515 cardiac cycles) and evaluated on the
testing cohort (1,054 cardiac cycles). Model architecture optimization, summarized in Figure
2 and Table S3, was performed across four different model configurations and the empirical
method. The mcCNN model demonstrated the highest fiducial point prediction accuracy,
with a median [IQR] error (true - predicted) of 0 [-7, 7.75] ms fort; and 1[-3, 4] msfort,. The
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fNN model had the second-best performance, with a median [IQR] error of -3[-17, 13] ms for
t; and -1 [-7, 6] ms for t,,. The combined MAE for fiducial point prediction was lowest for the
mcCNN model (median [IQR] =6 [3, 12.5] ms) and highest for the empirical method (median
[IQR] = 73 [56, 96.5] ms). Both the mcCNN and fNN models significantly outperformed the
other models in predicting t; and t,, as measured with r and R?, as shown in Table S2. The
algorithms were tested with cross-validation on incremental relative training sizes, the fNN
and mcCNN significantly outperformed the other models across all training sizes (Figure S4).
Based on these results, the mcCNN architecture was selected for further tuning.

Hyperparameter tuning was performed sequentially to explore potential improvements in
model performance. Three sets of experiments were conducted to evaluate the loss function
(experiments #1-3), data augmentation strategies (experiments #4-6), and regularization
methods (experiments #7-9). The first set of experiments (#1-3) indicated that the MAE base
loss function produced the most accurate predictions for t; (r=0.88, R*=0.77, RMSE=25ms)
and t, (r=0.91, R®=0.82, RMSE=17ms), leading to its selection for subsequent experiments.
The second set (#4-6) tested different data augmentation techniques. The truncate and
resample method (experiment #4) yielded the best improvement for t; prediction (r=0.92,
R®=0.85, RMSE=21ms), while the combination of truncation and resampling, and scaling
(experiment #6) provided the highest accuracy for t,, (r=0.94, R*=0.88, RMSE=14ms). Since
the performance difference between experiments #4 and #6 for t; was minimal, the
configuration from experiment #6 was chosen for further testing. Finally, experiments #7-9
assessed different regularization techniques, but none resulted in improved prediction
accuracy. A summary of the hyperparameter tuning results is provided in Table 2 and Figure
S5 in the supplementary material. Based on these findings, the final model configuration
was selected from experiment #6. This corresponds to the mcCNN architecture with an MAE
base loss function and data augmentation using both the truncate and resample method
along with scaling. Specifically, the mcCNN model takes three channels as inputs -
waveform, first and second derivative — and has three convolutional blocks followed by fully
connected layers. The convolutional blocks are each made up of a 1D convolutional layer, a
RelLU activation and a max pooling step; convolutional layers have 8, 16, and 16 dimensions,
a kernel size of 3, and a stride and padding of 1. The fully connected layers convert feature
maps to the fiducial point indices; the first layer is a dense layer with 128 units and RelLU
activation and the output layer has 2 units.

Model Evaluation

The PulseAl model, incorporating the mcCNN architecture, MAE loss function, and selected
data augmentation strategies, was evaluated on the test cohort (1,054 cardiac cycles).
Figure 3A presents the model’s mean absolute error distribution, with a median [IQR] error
of 5[3, 10] ms. Figure 3B visualizes the positioning of true versus predicted fiducial points (t;
and t,;) across the entire error spectrum. The model reported an average MAE of 9.4 ms with
a 95% confidence interval of [8.6, 10.1] and an average RMSE of 18.1 ms with a confidence
interval of [17.3, 19.0]. Figure 4 illustrates the prediction accuracy for fiducial points using
true-versus-predicted plots and Bland-Altman analysis. The t; point demonstrated a strong
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linear correlation (r=0.913, p<0.0001; ICC=0.951) with no bias (B [LOA] = 0 [-42, 43] ms).
Similarly, the t,, point exhibited a strong linear correlation (r=0.939, p<0.0001; ICC=0.958),
with no observed bias (B [LOA] = 0 [-27, 27] ms). The average error in fiducial point
identification was below the permitted error range of 30 ms for both ¢t; (12.6 ms) and t,, (6.2
ms). A stratified analysis of the PulseAl model performance with the mcCNN architecture
was performed for age, gender, and hypertensive status, results summarized in Table S4.
Figure 5 qualitatively demonstrates that prediction accuracy is consistent across the three
pressure waveform types—Type A, Type B, and Type C—classified based on Alx.

Physiological relevancy of the Approach

The true and predicted fiducial points were used to extract clinically relevant features from
the cardiac pressure waveform via PWA. Figure 6 compares PWA accuracy using PulseAl-
predicted fiducial points versus true measurements (human-annotated) for Alx, SPTI, and
ESP. Alx exhibited a strong correlation between predicted and true values (r=0.990,
p<0.0001; ICC=0.995) with no detectable bias (B [LOA] = 0 [-9, 8] %). Similarly, SPTI
demonstrated high agreement (r=0.988, p<0.0001; ICC=0.994) with negligible bias (B [LOA]
=0.0[-2.1, 2.1] %). ESP also showed excellent concordance (r=0.998, p<0.001; ICC=0.999)
and minimal bias (B [LOA] =-0.2 [-1.4, 1.1] mmHg).

Alx values, computed using both true and predicted fiducial points, were further analyzed in
relation to arterial stiffness metrics, specifically PTT (in milliseconds) and sPWV (in meters
per second) (Figure 7). Three instances with non-physiological negative PTT values were
excluded. A tertile analysis of PTT classified the population into three subgroups: T1 (n=362)
with (8, 56] ms, T2 (n=368) with (56, 66] ms, and T3 (n=321) with (66, 85] ms. Alx
demonstrated a clear inverse relationship with PTT, with significant differences observed
between all tertiles (T1 vs. T2, T2 vs. T3, and T1 vs. T3; all p<0.05). Additionally, no significant
differences were found between true and predicted Alx values within each tertile group (all
p > 0.05).

A similar tertile analysis was conducted for sPWYV, dividing the population into T1 (n=351)
with (19, 25.5] m/s, T2 (n=362) with (25.5, 30] m/s, and T3 (n=338) with (30, 210] m/s. Alx
exhibited a positive correlation with sPWV, with significant differences found betweenT1 and
T2 as well as between T1 and T3 (both p < 0.05), though no statistical difference was
observed between T2 and T3 (p > 0.05). Also, for sPWV no significant differences were
detected between true and predicted Alx values across all tertile groups (all p > 0.05).

Discussion

Consistent and reliable identification of fiducial points in a cardiac waveform is essential for
accurate PWA, making this precursor step crucialin clinical assessments [37]. While certain
fiducial points, such as the peak systolic pressure, are easily identifiable due to their distinct
characteristics, others — like the dicrotic notch and the inflection point — are more
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challenging to define. This challenge is further amplified in noninvasive signals, where high-
frequency components tend to be attenuated, making these features less distinct. In the
literature, there are several mathematical definitions used for the identification of these
points [35], [38]. For example, Takazawa et al. used a conditional definition based on the
fourth-order pressure derivative to determine whether the inflection point occurs before or
after the systolic peak, followed by zero crossings to determine its precise location [34].
Other studies have used second order derivative crossings [36], while others have identified
this point based on the intersection of tangents drawn at local minima and maxima in the
waveform’s first derivative [26]. Similar trends can be observed for the identification of the
dicrotic notch. While the notch is easily defined when distinctly visible, its definition can
become ambiguous in cases where it is represented by an incisura, making its identification
reliant on higher-order derivative behaviors [39], [40], [41], [42], [43]. Moreover, the diversity
in waveform morphologies may necessitate different identification strategies to ensure
accurate detection across various patient populations and physiological conditions.
Although these features are often easily identifiable by visual inspection from a trained
individual, translating their characteristics into precise mathematical definitions is a
complex task. This inherent complexity makes fiducial point detection particularly well-
suited for machine learning-based pattern recognition approaches, which can effectively
capture subtle waveform variations and improve detection robustness.

In this study, we evaluated multiple model architectures and preprocessing strategies to
identify the optimal approach for fiducial point detection. Among the four tested
architectures, the mcCNN demonstrated the lowest prediction error. This model processes
the pressure signal along with its first and second derivatives to identify fiducial points,
significantly outperforming the single-channel CNN model in terms of MAE (p<0.05). This
improvement suggests that incorporating the pressure signal’s derivatives provided
additional valuable information for the pattern recognition task. Interestingly, this result
aligns with empirical strategies commonly described in the literature, where higher-order
derivatives are employed to identify these fiducial points as signal characteristics are more
apparent [34], [36]. Given that CNN models rely on filters to extract patterns from signals,
this additional information from the waveform derivatives appears to enhance model
performance effectively.

As part of the model comparison, we also assessed the performance of an empirical method
based on conventional definitions of fiducial points found in the literature [34], [43]. As
shown in Figure 2 and Table S3 in the supplementary material, the machine learning models
strongly outperformed the empirical method. The prediction of the inflection point, t;,
exhibited a wide error distribution, with interquartile ranges between -74 to 137 ms. This
suggests that the empirical method frequently misidentified early systolic peaks as late
systolic peaks, or vice versa, highlighting the difficulty in defining mathematical rules to
classify such points. Another notable observation from this analysis is that the fNN method
achieved only slightly lower performance than the mcCNN (mcCNN MAE = 6 ms; fNN MAE =
12.5 ms), while maintaining a substantially smaller model size (McCNN = 257k parameters;
fNN = 15.5K parameters). Although the mcCNN model was chosen for downstream analysis
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due to superior performance, these results highlight the effectiveness of spectral machine
learning in developing compact yet accurate models [15], [44], [45].

Our findings further demonstrated that preprocessing strategies applied to the mcCNN
model improved performance. The most notable improvement resulted from the data
augmentation strategy, which involved modifying the input data such that a single data point
was used multiple times in the training set with different configurations. The base dataset
preprocessing included normalizing all input waveforms to a uniform length of 1000 units
and standardizing the amplitude to have zero mean and unit standard deviation. Two data
augmentation strategies were then applied: (1) rescaling the waveform amplitudes and (2)
truncating and resampling the waveforms. Since the inflection point and dicrotic notch
follow physiological phenomena, they tend to occur in relatively consistent locations.
Truncating and resampling shifted the location of these fiducial points within the waveform
while preserving its key features. This strategy aimed to prevent the model from learning a
fixed positional bias and instead focus on recognizing signal-based characteristics.
Similarly, rescaling the waveform amplitude was designed to prevent the model from relying
on amplitude patterns and instead promote recognition of relevant waveform features.
Conceptually, these data augmentation strategies were intended to expand the effective
size of the training dataset by allowing a single real data point to contribute multiple useful
and non-redundant samples. This is particularly important in clinical data applications,
where data collection is often challenging and time-consuming. By engineering effective
augmentation techniques, we can maximize the utility of available data and improve model
robustness in real-world scenarios.

The variability in waveform morphology is highly prevalent in noninvasive datasets, making
it crucial for the model to generalize across the entire spectrum. To assess this, we first
examined how prediction errors translated to the physical placement of fiducial points. As
shown in Figure 3B, across the MAE spectrum—from the 5th percentile to the 95th
percentile—the placement of fiducial points remained well-preserved. We further
investigated how the model’s predictions varied with waveform morphology, measured
using the Alx as defined by Murgo et al. [46]. As shown in Figure 5, the model accurately
identified fiducial points across the full spectrum of waveform morphologies—Type A, B, and
C—correctly distinguishing early and late systolic peaks and appropriately placing the
dicrotic notch, whether represented by a distinct notch or an incisura. These results
demonstrate the model's strong generalizability to waveforms with diverse morphologies,
which are commonly encountered in clinical measurements.

Accurate fiducial point detection is crucial for consistent PWA. While our detection method
introduces minimal error (MAE = 5 ms), the error is sufficiently small to ensure a strong one-
to-one correlation between waveform parameters measured using predicted fiducial points
and those measured with human-annotated points (Alx R?=0.980; SPTI R?=0.975; ESP
R2=0.998). This level of precision is particularly important, as PWA is widely getting popular
in both research and clinical settings to extract valuable information from pressure
waveforms and aid in diagnostic assessments [16], [47], [48], [49], [50]. Arterial stiffness is
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an established independent predictor of adverse cardiovascular events and PWA is a key
method for assessing this parameter [51], [52], [53], [54]. Alx is closely linked to arterial
properties, particularly through variations in pulse wave velocity and wave arrival time. As
arterial stiffness increases, the pulse wave travels faster, causing the reflected wave from
peripheral sites to return earlier during systole [55]. This premature arrival amplifies systolic
pressure, thereby increasing left ventricular afterload [55]. In this study, we demonstrated
the inverse relationship between Alx and PTT - the time of pressure wave propagation
between two points along the arterial system [56]. Additionally, our findings demonstrate
that a longer transit time reduces the reflected wave contribution to afterload, as measured
by lower Alx values. Given that Alx is highly dependent on the precise and consistent
identification of the waveform’s inflection point [57], our results further highlight the critical
role of accurate fiducial point detection for ensuring reliable PWA measurements. Therefore,
we envision that PulseAl could be directly integrated into PWA of cardiac pressure waveform
to perform single-site monitoring of arterial stiffness via Alx.

This study and its models have some limitations. First, the models were trained only on
waveforms from a brachial cuff system in sSBP hold. Since pressure waveform morphology
varies throughout the arterial tree, these models may not perform optimally on waveforms
from different measurement sites or modalities. Expanding the training dataset to include
diverse waveform sources is essential for broader applicability. Another limitation is the
trade-off between generalizability and accuracy. While our ML model effectively handles
diverse waveform morphologies, this flexibility may reduce precision in highly consistent
waveform patterns. In such cases, empirical methods may outperform the model, as they
can achieve near-perfect accuracy when waveform characteristics are stable and well-
defined. However, in real-world clinical data, where waveform variability is common, our
model's adaptability is key to ensuring reliable performance across different patient profiles
and conditions. Lastly, we acknowledge the ongoing debate in the literature regarding the
use of Alx to assess arterial stiffness. At the level of wave dynamics, Alx is governed by
arterial wave reflections and vascular properties, however several physiological factors
strongly modulate this relationship. As such, some studies have reported weak or
inconsistent associations between Alx and arterial stiffness [58], [59], [60]. While this study
is motivated by the clinical relevance of Alx, we recognize that Alx might not always serve as
a standalone assessment of arterial stiffness.

Conclusion

Our study developed and validated the PulseAl method for identifying t; and t,, on a cardiac
waveform to serve as a tool for monitoring arterial stiffness from single-site pressure
measurements. PulseAl was trained to predict the location of fiducial points from resampled
and standardized pressure waveforms measured using a brachial cuff in the sSBP hold. The
optimized model demonstrated strong predictive accuracy, achieving a MAE of 9.4 ms
overall, with errors of 12.6 ms for t; and of 6.2 ms for t,,, both of which fall within the
acceptance error range of 30ms. Accurate fiducial point detection is the foundation for
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reliable PWA, which enabled precise measurements of Alx, SPTI, and ESP using the
predicted fiducial points. Alx from the brachial waveform revealed an inverse relationship
with PTT, a surrogate metric of PWV, consistent with established arterial stiffness metrics.
These results highlighted that Alx measured at the brachial is sensitive to elevated arterial
stiffness. In conclusion, this study demonstrated that machine learning-based fiducial point
detection provides a reliable approach for accurate PWA and a practical tool for single-site
assessment of arterial stiffness-related metrics.
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818 Tables

819
Variable Quantity (n=145)
Age, years 669
Height, cm 170+10
Weight, kg 84.6+19.2
BMI, kg/m”"2 29.0x5.5
Male, n (%) 88 (61%)
White, n (%) 96 (66%)
Smoker, n (%) 22 (15%)
Diabetes, n (%) 51 (35%)
Hypertension, n (%) 115 (79%)

Hyperlipidemia, n (%) 107 (74%)

820 Table 1 -Study population characteristics.
821



822
823
824
825

Experiment Number

Metric 1 2 3 4 5 6 7 8 9

r 0.85 0.88 0.86 0.92 0.86 0.91 0.89 0.9 0.89

R? 0.71 0.77 0.74 085 0.74 083 0.79 082 0.79
t, RMSE, ms 29 25 27 21 27 22 24 22 24
Mean Difference, ms -7 -2 2 0 2 0 0 -1 -2
Limits of Agreement, ms 54 49 53 41 52 42 47 44 47

r 0.89 091 0.90 0.89 09 094 092 092 0.89

R? 0.77 0.82 0.78 0.78 0.81 0.88 0.85 0.83 0.76
t, RMSE, ms 19 17 18 18 17 14 15 16 19
Mean Difference, ms 4 3 6 1 2 0 1 0 3
Limits of Agreement, ms 37 32 34 36 33 27 30 32 37

Table 2 - Prediction accuracy metrics for the cardiac wave fiducial point predictions for the
hyperparameter and algorithm tuning experiments.
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Figure 1 — Overview of the PulseAl method for fiducial point detection. (A) Conceptual
overview of the PulseAl algorithm, including procedural steps and data flow. (B) Schematic
representation of the study design and data utilization workflow. (C) Brachial pressure
waveform with labeled fiducial points: peak time (tp), inflection point time (t), and dicrotic
notch time (t,). Shaded regions indicate the systolic and diastolic phases of the cardiac

cycle.
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detection across various algorithms, including the convolutional neural network (CNN),
multi-channel CNN (mcCNN), multi-layer perceptron (MLP), Fourier-based neural network
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Figure 3 - Performance of the optimized PulseAl model error in the test population. (A)
Mean absolute error (MAE) distribution across the test population (n=1,054). (B) Five sample
waveforms illustrating fiducial point predictions across the error spectrum at the 5", 25%,
50™, 75" and 95" percentile of MAE.
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Figure 4 - Prediction accuracy of PulseAl for pulse waveform fiducial points. (Top) True-
versus-predicted plots for fiducial points t; and t,,, with the black solid line representing the
line of proportionality. (Bottom) Bland-Altman plots for t; and t,, where the solid blue line
indicates the mean difference, and the shaded area represents the limits of agreement.
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Figure 5 — PulseAl fiducial point predictions versus true measurement across different
wave morphologies. True and predicted fiducial points are shown for waveforms classified
based on the shape type according to Augmentation Index (Alx) morphology definitions.
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Figure 6 - Evaluation of pulse waveform analysis (PWA) accuracy using PulseAl-
predicted fiducial points. (Top) True-versus-predicted plots for pulse waveform features
extracted via PWA using true and predicted fiducial points. From left to right, the features
include Augmentation Index (Alx), systolic pressure-time integral (SPTI), and end-systolic
pressure (ESP). The black solid line represents the proportionality line. (Bottom) Bland-
Altman plots for the PWA features, with the solid blue line denoting the mean difference, and
the shaded area representing the limits of agreement.
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872
873  Figure 7 — Relationship between arterial stiffness and PulseAl-derived Augmentation

874 Index (Alx). Alx measurements are compared with pulse transit time (PTT) and surrogate of
875  pulse wave velocity (sPWV) as indirect measures of arterial stiffness. Statistical significance
876 is marked as * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.
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