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Abstract 18 
 19 
Arterial sti:ness is a fundamental characteristic of circulatory physiology and a well-20 
established predictor of cardiovascular risk and mortality. However, routine clinical 21 
assessment remains limited by the need for dual-site measurements. To address this 22 
challenge, we developed a machine learning algorithm – PulseAI – for automated fiducial 23 
point detection on brachial cu: waveforms for single-site assessment of arterial sti:ness. 24 
PulseAI was trained and evaluated using a clinical dataset comprising 5,215 waveforms from 25 
145 heterogeneous subjects. Performance was assessed on fiducial point predictions 26 
accuracy (inflection point, tᵢ, and dicrotic notch, tₙ) and downstream pulse waveform 27 
analysis (PWA) metrics. Our multi-channel convolutional neural network (PulseAI) reported 28 
a median [IQR] on mean absolute error for fiducial point detection of 5 [3, 10] ms. PulseAI 29 
demonstrated high accuracy in predicting ti (r=0.913, p<0.0001) and tn (r=0.939, p<0.0001), 30 
with an average prediction error of 12.6 ms and 6.2 ms for tᵢ and tn, respectively. While the tn 31 
results are comparable to other academic models reporting 5-10 ms errors, our approach 32 
provides both fiducial point indices from a single model. PWA features derived from PulseAI 33 
closely matched those derived from human-annotated labels, including systolic pressure-34 
time integral (r=0.988, p<0.0001), augmentation index (AIx) (r=0.990, p<0.0001), and end 35 
systolic pressure (r=0.998, p<0.0001). AIx tertiles showed statistically significant association 36 
with height-adjusted pulse transit time (p<0.05), used as a surrogate of arterial sti:ness, 37 
demonstrating the model's sensitivity to sti:ness-related changes. These findings 38 
demonstrate that PulseAI enables accurate fiducial point detection and represents a 39 
clinically viable tool for automated, single-site monitoring of arterial sti:ness. 40 
 41 
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Highlights 50 
 51 

• Arterial sti:ness is clinically valuable, but complex to assess routinely.  52 
• PulseAI reliably detects fiducial points across diverse waveform morphologies. 53 
• Spectral machine learning achieves comparable performance with lower 54 

complexity. 55 
• AIx derived from PulseAI correlates with arterial sti:ness assessed via PTT. 56 
• PulseAI enables automated, single-site arterial sti:ness monitoring. 57 

 58 
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Introduction 61 
 62 
Despite significant advances in cardiovascular care, cardiovascular disease (CVD) remains 63 
the leading cause of mortality in developed countries [1]. While blood pressure (BP) is a well-64 
established risk factor, additional markers have been shown to play a critical role in the 65 
development and progression of CVD [2], [3], [4]. Among these, arterial sti:ness has 66 
emerged as an independent predictor of cardiovascular risk and mortality [5], [6]. Large 67 
artery elasticity is a fundamental characteristic of circulatory physiology, helping to bu:er 68 
the pulsatile flow generated by cardiac ejection during systole [7]. Pulse wave velocity (PWV) 69 
is a widely recognized metric for assessing arterial sti:ness, calculated using the pulse 70 
transit time (PTT) and the propagation distance between two measurement sites [8]. While 71 
PWV is considered the gold standard for arterial sti:ness assessment, its reliance on dual-72 
site measurement introduces practical challenges in clinical settings [9]. On one hand, 73 
e:orts have been made to estimate PWV from single-point measurements using machine 74 
learning models, o:ering a potentially simpler alternative. Jin et al. developed a Gaussian 75 
Process Regression method to estimate PWV from selected waveform features [10]. Mitchell 76 
et al., using a deep learning approach, trained a convolutional neural network (CNN) to 77 
predict carotid-to-femoral PWV from single, uncalibrated waveforms acquired at the radial, 78 
brachial, or femoral sites [11]. Beyond these direct applications, machine learning is being 79 
widely adopted in cardiology for tasks including cardiovascular risk stratification, transfer 80 
functions, and medical image analysis, demonstrating its broad utility [12], [13], [14], [15]. 81 
On the other hand, surrogate parameters have been investigated for this purpose. 82 
Augmentation index (AIx) has gained attention as a measure of systemic arterial sti:ness 83 
derived from a single cardiac waveform measurement [16]. However, the clinical utility of 84 
such parameters is dependent not only on their theoretical significance but also on the 85 
reliability and precision of their measurement [16], [17], [18]. 86 
 87 
The first key factor influencing this accuracy is the reliability of pulse waveform acquisition. 88 
Increasing attention has been directed toward noninvasive systems such as brachial cuff 89 
devices, due to their ease of use and improved measurement repeatability—both essential 90 
for clinical adoption [19], [20]. In this context, suprasystolic blood pressure (sSBP) 91 
measurements mode have gained prominence for its ability to capture detailed and feature 92 
rich pressure waveforms [19], [21], [22], [15], [23], [14]. Beyond waveform acquisition, the 93 
accurate identification of fiducial points along the cardiac pressure waveform remains a 94 
critical challenge. These points correspond to key physiological events, such as the arrival 95 
of the reflected wave and the closure of the aortic valve, typically marked by the inflection 96 
point and the dicrotic notch, respectively. However, their morphology can vary significantly 97 
depending on the population and study characteristics. For instance, the dicrotic notch may 98 
appear as a distinct physical notch or a subtle incisura, while the inflection point can occur 99 
either before or after the systolic peak. This variability complicates the development of 100 
universally applicable mathematical rules for their detection, often leading researchers to 101 
rely on manual identification or study-specific criteria. For example, Sugawara et al. used 102 
the fourth order derivative to find the systolic inflection point [24], [25], Munir et al. used the 103 
first order derivatives and tangents to determine the location of the inflection point [26], and 104 



Ueda et al. used an experienced observed to measure the inflection point [27]. To this end, 105 
several efforts have been dedicated towards developing algorithmic approaches for 106 
automatic identification. Saffarpour et al. developed Physiowise, a physics-aware approach 107 
to dicrotic notch identification [28], Pal et al. pioneered an iterative envelope mean method 108 
for detection of the dicrotic notch [29], [30], and Hoeksel et al. uses a three-element 109 
windkessel model to estimate flow from pressure and then identify the dicrotic notch [31]. 110 
While these methods showed promising results, they only focused on a single identification 111 
task and therefore require complementation with other methods for full detection. With the 112 
substantial increment of healthcare dataset size, there is a growing need for 113 
comprehensive, high-precision, and automated tools to facilitate and standardize this 114 
process. 115 
 116 
In this study, we assess the accuracy and generalizability of machine learning for fiducial 117 
point detection, specifically identifying the inflection point and the dicrotic notch, using our 118 
model, PulseAI. We train and evaluate the model on a dataset of manually labeled and 119 
human-annotated cardiac pressure waveforms acquired from a brachial cu: system 120 
operating in sSBP mode [32]. To benchmark its performance, we compare PulseAI’s results 121 
against conventional mathematical methods described in the literature and use the 30 ms 122 
reported error ranges as an acceptance criteria [28], [29]. To demonstrate the physiological 123 
relevance of our machine learning pipeline, we have also examined the association between 124 
arterial sti:ness and AIx derived from our proposed automated algorithm. Lastly, in order to 125 
provide a standardized and accessible platform for researchers to integrate into their own 126 
studies, the optimized trained model of this study has been made publicly available on 127 
GitHub. 128 
 129 
Methods 130 
 131 
Clinical Study Design 132 
 133 
Brachial pressure waveforms were recorded using a custom and laboratory-developed 134 
investigational brachial cuff device designed for high-resolution waveform acquisition [32]. 135 
The device has been previously validated against intra-arterial measurements for waveform 136 
accuracy [33]. The device’s protocol first performed an oscillometric blood pressure 137 
measurement for calibration, followed by pulse waveform capture using the inflate-and-138 
hold methodology. This methodology was applied at the sSBP hold, defined as 35 mmHg 139 
above the systolic blood pressure (SBP), and maintained for 40 seconds.  140 
 141 
The dataset analyzed in this study consists of brachial pressure waveforms collected during 142 
cardiac catheterization procedures. Measurements were performed with subjects in the 143 
supine position, and the brachial cuff was placed on the left arm following standard cuff 144 
placement guidelines. The study enrolled individuals aged 21 years or older who were 145 
referred for non-emergent left heart catheterization between September 2021 and 146 
September 2022. Exclusion criteria included recent severe cardiac events (within one 147 
week), inability to undergo routine blood pressure measurement, and contraindications to 148 
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catheterization. Simultaneous aortic catheterization waveforms were recorded during 149 
brachial cuff measurements to enable PTT calculations. The signals were captured at a 150 
sampling rate of 1 kHz.  151 
 152 
The study was approved by the Institutional Review Board of Western and Salus. Written 153 
informed consent was obtained from all participants before the procedure. The study 154 
adhered to the principles of the Declaration of Helsinki. 155 
 156 
Study Population 157 
 158 
The study population included 145 subjects with a mean age of 66 ± 9 years, 88 males (61%), 159 
and a mean body mass index (BMI) of 29.0 ± 5.5 kg/m². Patient characteristics for the entire 160 
study population are summarized in Table 1. The analysis generated a dataset of 5215 161 
waveforms from the brachial cu: during the sSBP hold phase. The distribution of cardiac 162 
cycles per individual showed a median of 37, with interquartile ranges of [30, 43] cycles per 163 
subject, a maximum of 62, and a minimum of 2 (Figure S2). The study population was 164 
partitioned into three cohorts at the subject level using a 70%-10%-20% train-validation-test 165 
split, resulting in cohorts of 102, 14, and 29 subjects, and 3646, 515, and 1054 waveforms, 166 
respectively (Figure 1B). Table S2 provides a summary of the population characteristics for 167 
the training, validation, and test cohorts. Figure S3 shows the cumulative distribution 168 
function of the fiducial points in the time-based format as well as the unit-normalized 169 
configuration; the train-validation-test cohorts showed overlapping distributions for both 𝑡̃!  170 
and 𝑡̃".  171 
 172 
Data and Signal Preprocessing 173 
 174 
The brachial cu: recordings were manually inspected to remove instances of apparatus 175 
malfunction, procedural errors, saturated sensor output, and arrhythmias. The sSBP 176 
pressure signal recordings from the brachial cu: were segmented into individual cardiac 177 
cycles using the foot-to-foot partition method [8]. Each cardiac cycle can be represented 178 
mathematically as,  179 
 180 

𝑝# = 𝑝(𝑡#),					𝑚 = 0,1, … , 𝑁 − 1.		 (1) 181 
 182 
  183 
Where 𝑁 is the length of the cardiac cycle. This segmentation resulted in a dataset 184 
containing multiple cardiac cycles for each subject, with each cycle treated as a unique but 185 
dependent data point. While cycles from the same subject were considered distinct, they 186 
were not independent due to the shared underlying physiological characteristics. Fiducial 187 
points of interest on the pressure waveform – namely the peak pressure, inflection point and 188 
dicrotic notch - were manually identified for the entire dataset: 189 
 190 

𝑡$ = 𝑝𝑒𝑎𝑘	𝑡𝑖𝑚𝑒	191 
𝑡! = 𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	192 



𝑡" = 𝑑𝑖𝑐𝑟𝑜𝑡𝑖𝑐	𝑛𝑜𝑡𝑐ℎ	𝑡𝑖𝑚𝑒 193 
 194 
These fiducial points represent key pressure waveform features: peak time corresponds to 195 
maximal systolic pressure, the inflection time marks the arrival of the reflected wave, and 196 
the dicrotic notch time indicates the closure of the aortic valve. The cardiac cycles along with 197 
the fiducial points were combined to generate the dataset for the study. 198 
 199 
Both dataset components – fiducial points and brachial cu: waveforms – were preprocessed 200 
before being fed into the machine learning portion of the study. The fiducial points were 201 
converted to unit-normalized quantities by dividing for the duration of the cardiac cycle, 202 
denoted 𝑇, as shown below: 203 
 204 

𝑡̃$ =
𝑡$
𝑇
				 ; 				 𝑡̃! =

𝑡!
𝑇
				 ; 				 𝑡̃" =

𝑡"
𝑇
	 (2) 205 

 206 
This normalization ensures that the fiducial points all lie within the range [0,1], which is 207 
optimal for an ML model output.  208 
 209 
Brachial cu: waveforms were individually resampled to a fixed length of 1000 samples to 210 
ensure consistent input size to the ML model. Resampling was performed using a Fourier-211 
based methodology along the time axis, which is outlined in Algorithm 1. Resampled 212 
waveforms were standardized to a mean value of zero and a standard deviation of one. Upon 213 
performing both procedures, we define these as resampled and normalized waveforms. The 214 
first and second derivatives were computed using the finite di:erence method on the 215 
resampled and normalized waveforms; interior points were computed with second-order 216 
accurate central di:erences while at the boundaries we used one-sided di:erences to 217 
preserve signal length. This signal preprocessing generated a dataset of waveforms – signal, 218 
first derivative and second derivative – with fixed length, centered around zero, and a 219 
standard deviation of one.  220 
 221 

 222 



 223 
Algorithm 1: Fourier-based Resampling Method 
Input: waveform signal 𝑝(𝑡), desired signal length M 
Output: resampled signal 𝑝%(𝑡) 
1. Discrete Fourier Transform 

Convert signal from time domain to frequency domain: 

𝑃& = @ 𝑝#𝑒
'()*&#+

+',

#-.

,					𝑘 = 0, 1, … , 𝑁 − 1. 

Where 𝑃& are the frequency components of the original signal, and N is the length of 
the original signal 

 
2. Frequency Domain Resampling 

If M > N, apply zero-padding to the frequency components: 
 

𝑃&% = A
𝑃& , 𝑘 = 0,… ,𝑁 2⁄
0, 𝑁 2⁄ < 𝑘 < 𝑀 −𝑁 2⁄
𝑃& , 𝑘 = 𝑀 − 𝑁 2⁄ ,… ,𝑀 − 1	

 

 
If M < N, truncate the frequency components: 
 

𝑃&% = 𝑃& ,					𝑘 = 0, 1, … ,𝑀 − 1. 
 
3. Inverse Discrete Fourier Transform 

Convert the signal back to the time domain: 

𝑝(% =
1
𝑀@ 𝑃&%𝑒

'(*&(/

/',

&-.

,						𝑗 = 0,1, … ,𝑀 − 1. 

 
 224 
The dataset was partitioned for standard model training and testing using a 70%-10%-20% 225 
train-validation-test split ratio. Given the dependence of cardiac cycles within a given 226 
subject, the split was performed at the subject level rather than the cardiac cycle level to 227 
prevent data leakage. The training cohort was used for model training, the validation cohort 228 
for early stopping during training, and the testing cohort for model evaluation. 229 
 230 
PulseAI Method 231 
 232 
The PulseAI method is a machine learning approach developed to identify fiducial points on 233 
the cardiovascular pressure waveform. The model takes as input a single cardiac cycle and 234 
outputs the unit-normalized indices of the fiducial points. In this model implementation, the 235 
PulseAI method was trained to predict the relative time position of the inflection point and 236 
the dicrotic notch for the brachial pressure waveforms in the sSBP hold. Figure 1a shows an 237 
overview of the multi-channel convolutional neural network (CNN) model implemented for 238 
PulseAI. The PulseAI method was optimized for predicting the fiducial points 𝑡!  and 𝑡" 239 



through a two-stage process: model architecture evaluation and hyperparameter tuning. 240 
Figure S1 in the supplementary material provides an overview of the optimization approach 241 
used in this study. 242 
 243 
In the first stage, we evaluated four model architectures: a CNN, a multi-channel CNN 244 
(mcCNN), a multilayer perceptron (MLP), and a Fourier-based Neural Network (fNN). At this 245 
stage, all models used an element-wise mean-square error loss function.  246 
 247 
The CNN model consisted of three convolutional blocks, each sequentially comprising a 1D 248 
convolutional layer, ReLU activation, and max pooling. The convolutional layers had 8, 16, 249 
and 16 filters, respectively, with a kernel size of 3, a stride of 1, and padding of 1. One-250 
dimensional max-pooling with a kernel size of 2 and a stride of 2 was applied after each block 251 
to progressively downsample the feature maps. The output of the final convolutional block 252 
was flattened and passed through two fully connected layers: the first with 128 units and the 253 
second mapping to the two output classes. The model processed a single-channel input, 254 
representing the resampled and normalized waveform of length 1000. The mcCNN model 255 
had the same architecture as the CNN model but processed three input channels: the 256 
resampled and normalized waveform, its first derivative, and its second derivative, each of 257 
length 1000. The use of derivatives was intended to capture high-frequency features 258 
embedded within the signal shape.  259 
 260 
The MLP model consisted of four fully connected layers, mapping an input of 1000 units to 261 
two output units. The three hidden layers contained 128, 64, and 32 units, respectively, each 262 
followed by a ReLU activation function and a dropout rate of 0.35. The fNN model was a fully 263 
connected feedforward neural network operating in the frequency domain. The input signal 264 
was first transformed into the frequency domain, truncated to retain a limited number of 265 
modes, then flattened into its real and imaginary components before being passed into the 266 
network. The network architecture beyond this preprocessing step was identical to the MLP 267 
model. The model architecture that yielded the best performance was selected for 268 
hyperparameter optimization. 269 
 270 
The hyperparameter tuning phase focused on three key factors: loss function selection, data 271 
augmentation, and regularization. First, we compared model performance with di:erent 272 
base loss functions: mean squared error (MSE), mean absolute error (MAE), and Huber loss 273 
with δ=10 ms. A penalty term is added to each base loss function making the total loss: 274 

	ℒ01023 =	ℒ4256 + ℒ$6"2307 (3) 275 
The penalty term computes the average of all positive index di:erences between the 276 
inflection point and dicrotic notch. This penalty e:ectively enforces the physiological 277 
constraint that the inflection point occurs before the dicrotic notch.  278 

	ℒ$6"2307 =
1
𝑛@maxL0, 𝑌N!,. − 𝑌N!,,O

"

!-,

(4) 279 

Where 𝑖𝜖{1, … , 𝑛} indexes the samples within the dataset. 280 
 281 



 282 
Next, we investigated the impact of data augmentation, generating additional training 283 
signals by applying truncation and resampling, and scaling. Three augmentation strategies 284 
were evaluated: (1) truncation and resampling, (2) scaling, and (3) both applied sequentially. 285 
Finally, we explored regularization techniques, testing dropout, weight decay, and their 286 
combined e:ect. At each step, the best-performing model configuration was carried forward 287 
for further evaluation. This tuning process resulted in nine experimental scenarios, detailed 288 
in Table S1 in the supplementary material. Figure S1 summarizes model selection and 289 
hyperparameter tuning.  290 
 291 
Empirical Method 292 
 293 
The empirical method served as a reference for comparing model performance in identifying 294 
fiducial points along the pressure waveform. This approach was used to detect both the 295 
inflection point, 𝑡!, as well as the dicrotic notch, 𝑡". The inflection point was determined 296 
using the fourth-order derivative, following the guidelines established by Takazawa et al. 297 
[34]. The dicrotic notch was identified as the first peak of the second derivative occurring 298 
after the minimum of the first derivative, as described by Peter et al. [35] and Takazawa et al. 299 
[36]. The mathematical steps behind the empirical method have been summarized in 300 
Algorithm 2. 301 
 302 
Algorithm 2: Empirical Method for Calculating Fiducial Points 
Input: waveform signal 
Output: tp, ti, tn (fiducial point indices) 
1. Compute Derivatives: 

1.1. 𝑝(𝑡)9, ← ∇𝑝(𝑡)         (first derivative) 
1.2. 𝑝(𝑡)9) ← ∇𝑝(𝑡)9)     (second derivative) 
1.3. 𝑝(𝑡)9: ← ∇𝑝(𝑡)9)     (third derivative) 
1.4. 𝑝(𝑡)9; ← ∇𝑝(𝑡)9:     (fourth derivative) 

2. Identify Maximum Value: 
2.1. 𝑡$ ← argmax	L𝑝(𝑡)O 

3. Determine Slope at Maximum: 
3.1. 𝑠𝑙𝑜𝑝𝑒9; ← 𝑝(𝑡#2<)9; 



4. Identify Inflection Point: 
If 𝑠𝑙𝑜𝑝𝑒9; > 0 (late systolic peak): 

4.1. Identify zero-crossings of 𝑝(𝑡)9; (positive to negative) 
If at least two zero-crossings exist before 𝑡$: 
o 𝑡! ← second zero-crossing of 𝑝(𝑡)9; 

Else: 
o 𝑡! ← None 

Else (early systolic peak): 
4.2. Identify zero-crossings of  𝑝(𝑡)9; (negative to positive) 
If at least three zero-crossings exist after 𝑡$: 
o 𝑡! ← third zero-crossing of 𝑝(𝑡)9; 

Else: 
o 𝑡! ← None 

5. Identify Dicrotic Notch: 
5.1. 𝑡9,,#!" ← argmin(𝑝(𝑡)9,) 
5.2. 𝑡" ← argmax _𝑝L𝑡9,,#!": O9)a + 𝑡9,,#!" 

6. Return: L𝑡$, 𝑡! , 𝑡"O 
 303 
Hemodynamic Analyses 304 
 305 
Pressure waveforms captured with a brachial cu: system are in non-physiological units, as 306 
they represent the pressure fluctuations inside the cu:. To convert these waveforms into 307 
physiological units, we applied a previously validated calibration procedure using the blood 308 
pressure values from the oscillometric measurement [33]. The waveforms were scaled such 309 
that the peak pressure corresponds to SBP, and the base pressure corresponds to diastolic 310 
blood pressure (DBP). The calibration equation used is: 311 
 312 

𝑝=23!4 =
𝑝(𝑡) − minL𝑝(𝑡)O

maxL𝑝(𝑡)O − minL𝑝(𝑡)O
∗ (𝑆𝐵𝑃 − 𝐷𝐵𝑃) + 𝐷𝐵𝑃	 (5) 313 

 314 
 315 
Where 𝑝=23!4  represents the calibrated pressure waveform.  316 
 317 
Pulse wave analysis (PWA) was performed on the calibrated waveform to extract clinically 318 
significant parameters, including AIx, systolic pressure time integral (SPTI), and end-systolic 319 
pressure (ESP). These parameters were computed using both the measured (human-320 
annotated) and PulseAI-generated fiducial points. Additionally, PTT—the foot-to-foot time 321 
di:erence between the start of the waveform at the central site (captured via catheter) and 322 
cu: waveforms—was calculated in milliseconds. PTT was further adjusted for subject height 323 
to derive a surrogate measure of PWV, herein denoted as sPWV, both of which serve as 324 
indicators of arterial sti:ness [8]. 325 
 326 



𝐴𝐼𝑥 =

⎩
⎪
⎨

⎪
⎧𝑝L𝑡$O − 𝑝(𝑡!)
𝑝L𝑡$O − 𝑝(𝑡.)

,								𝑖𝑓	𝑡! < 𝑡$

𝑝(𝑡!) − 𝑝L𝑡$O
𝑝L𝑡$O − 𝑝(𝑡.)

,						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6)	328 

 327 

𝑆𝑃𝑇𝐼 = p 𝑝(𝑡)	𝑑𝑡

0!

0"

	 (7)	330 

 329 
𝐸𝑆𝑃 = 𝑝(𝑡")		 (8) 331 

 332 
𝑃𝑇𝑇 = 𝑡>110,=20? − 𝑡>110,=@>>	 (9) 333 

 334 

𝑠𝑃𝑊𝑉 =
𝐻𝑒𝑖𝑔ℎ𝑡
𝑃𝑇𝑇

		 (10) 335 

 336 
 337 
Statistical Analyses 338 
 339 
Fiducial point prediction accuracy was evaluated in the time domain. To recover the 340 
predicted fiducial point values, the unit-normalized predictions were multiplied by the 341 
cardiac cycle duration and rounded to the nearest millisecond (ms). Model performance was 342 
assessed by calculating the prediction error (true – predicted) for individual fiducial points, 343 
as well as the mean absolute error (MAE) for joint predictions. Several metrics were used to 344 
evaluate model accuracy, including the Pearson correlation coe:icient (r), coe:icient of 345 
determination (R²), root mean squared error (RMSE), mean di:erence, and limits of 346 
agreement. The prediction accuracy for fiducial points and PWA-derived parameters was 347 
visualized using scatter plots of true-versus-predicted values and Bland-Altman analysis. 348 
Correlation strength was quantified using r and the intraclass correlation coe:icient (ICC), 349 
along with 95% confidence intervals (95% CI). Bland-Altman analysis was also used to 350 
assess bias and limits of agreement. Significance level was set at a value of 𝑝	 < 	0.05.  351 
 352 
 353 
Results 354 
 355 
Model Development 356 
 357 
The PulseAI model was trained on the training cohort (3,646 cardiac cycles) with an early 358 
stopping criterion based on the validation cohort (515 cardiac cycles) and evaluated on the 359 
testing cohort (1,054 cardiac cycles). Model architecture optimization, summarized in Figure 360 
2 and Table S3, was performed across four di:erent model configurations and the empirical 361 
method. The mcCNN model demonstrated the highest fiducial point prediction accuracy, 362 
with a median [IQR] error (true - predicted) of 0 [-7, 7.75] ms for 𝑡!   and 1 [-3, 4] ms for 𝑡". The 363 



fNN model had the second-best performance, with a median [IQR] error of -3 [-17, 13] ms for 364 
𝑡!  and -1 [-7, 6] ms for 𝑡". The combined MAE for fiducial point prediction was lowest for the 365 
mcCNN model (median [IQR] = 6 [3, 12.5] ms) and highest for the empirical method (median 366 
[IQR] = 73 [56, 96.5] ms). Both the mcCNN and fNN models significantly outperformed the 367 
other models in predicting 𝑡!  and 𝑡" as measured with r and R2, as shown in Table S2. The 368 
algorithms were tested with cross-validation on incremental relative training sizes, the fNN 369 
and mcCNN significantly outperformed the other models across all training sizes (Figure S4). 370 
Based on these results, the mcCNN architecture was selected for further tuning.  371 
 372 
Hyperparameter tuning was performed sequentially to explore potential improvements in 373 
model performance. Three sets of experiments were conducted to evaluate the loss function 374 
(experiments #1–3), data augmentation strategies (experiments #4–6), and regularization 375 
methods (experiments #7–9). The first set of experiments (#1–3) indicated that the MAE base 376 
loss function produced the most accurate predictions for 𝑡!  (r=0.88, R²=0.77, RMSE=25ms) 377 
and 𝑡" (r=0.91, R²=0.82, RMSE=17ms), leading to its selection for subsequent experiments. 378 
The second set (#4–6) tested di:erent data augmentation techniques. The truncate and 379 
resample method (experiment #4) yielded the best improvement for 𝑡!  prediction (r=0.92, 380 
R²=0.85, RMSE=21ms), while the combination of truncation and resampling, and scaling 381 
(experiment #6) provided the highest accuracy for 𝑡" (r=0.94, R²=0.88, RMSE=14ms). Since 382 
the performance di:erence between experiments #4 and #6 for 𝑡!  was minimal, the 383 
configuration from experiment #6 was chosen for further testing. Finally, experiments #7–9 384 
assessed di:erent regularization techniques, but none resulted in improved prediction 385 
accuracy. A summary of the hyperparameter tuning results is provided in Table 2 and Figure 386 
S5 in the supplementary material. Based on these findings, the final model configuration 387 
was selected from experiment #6. This corresponds to the mcCNN architecture with an MAE 388 
base loss function and data augmentation using both the truncate and resample method 389 
along with scaling. Specifically, the mcCNN model takes three channels as inputs – 390 
waveform, first and second derivative – and has three convolutional blocks followed by fully 391 
connected layers. The convolutional blocks are each made up of a 1D convolutional layer, a 392 
ReLU activation and a max pooling step; convolutional layers have 8, 16, and 16 dimensions, 393 
a kernel size of 3, and a stride and padding of 1. The fully connected layers convert feature 394 
maps to the fiducial point indices; the first layer is a dense layer with 128 units and ReLU 395 
activation and the output layer has 2 units.  396 
 397 
Model Evaluation 398 
 399 
The PulseAI model, incorporating the mcCNN architecture, MAE loss function, and selected 400 
data augmentation strategies, was evaluated on the test cohort (1,054 cardiac cycles). 401 
Figure 3A presents the model’s mean absolute error distribution, with a median [IQR] error 402 
of 5 [3, 10] ms. Figure 3B visualizes the positioning of true versus predicted fiducial points (𝑡!  403 
and 𝑡") across the entire error spectrum. The model reported an average MAE of 9.4 ms with 404 
a 95% confidence interval of [8.6, 10.1] and an average RMSE of 18.1 ms with a confidence 405 
interval of [17.3, 19.0]. Figure 4 illustrates the prediction accuracy for fiducial points using 406 
true-versus-predicted plots and Bland-Altman analysis. The 𝑡!  point demonstrated a strong 407 



linear correlation (r=0.913, p<0.0001; ICC=0.951) with no bias (B [LOA] = 0 [-42, 43] ms). 408 
Similarly, the 𝑡" point exhibited a strong linear correlation (r=0.939, p<0.0001; ICC=0.958), 409 
with no observed bias (B [LOA] = 0 [-27, 27] ms). The average error in fiducial point 410 
identification was below the permitted error range of 30 ms for both 𝑡!  (12.6 ms) and 𝑡" (6.2 411 
ms). A stratified analysis of the PulseAI model performance with the mcCNN architecture 412 
was performed for age, gender, and hypertensive status, results summarized in Table S4. 413 
Figure 5 qualitatively demonstrates that prediction accuracy is consistent across the three 414 
pressure waveform types—Type A, Type B, and Type C—classified based on AIx.  415 
 416 
Physiological relevancy of the Approach 417 
 418 
The true and predicted fiducial points were used to extract clinically relevant features from 419 
the cardiac pressure waveform via PWA. Figure 6 compares PWA accuracy using PulseAI-420 
predicted fiducial points versus true measurements (human-annotated) for AIx, SPTI, and 421 
ESP. AIx exhibited a strong correlation between predicted and true values (r=0.990, 422 
p<0.0001; ICC=0.995) with no detectable bias (B [LOA] = 0 [-9, 8] %). Similarly, SPTI 423 
demonstrated high agreement (r=0.988, p<0.0001; ICC=0.994) with negligible bias (B [LOA] 424 
= 0.0 [-2.1, 2.1] %). ESP also showed excellent concordance (r=0.998, p<0.001; ICC=0.999) 425 
and minimal bias (B [LOA] = -0.2 [-1.4, 1.1] mmHg). 426 
 427 
AIx values, computed using both true and predicted fiducial points, were further analyzed in 428 
relation to arterial sti:ness metrics, specifically PTT (in milliseconds) and sPWV (in meters 429 
per second) (Figure 7). Three instances with non-physiological negative PTT values were 430 
excluded. A tertile analysis of PTT classified the population into three subgroups: T1 (n=362) 431 
with (8, 56] ms, T2 (n=368) with (56, 66] ms, and T3 (n=321) with (66, 85] ms. AIx 432 
demonstrated a clear inverse relationship with PTT, with significant di:erences observed 433 
between all tertiles (T1 vs. T2, T2 vs. T3, and T1 vs. T3; all p<0.05). Additionally, no significant 434 
di:erences were found between true and predicted AIx values within each tertile group (all 435 
p > 0.05). 436 
 437 
A similar tertile analysis was conducted for sPWV, dividing the population into T1 (n=351) 438 
with (19, 25.5] m/s, T2 (n=362) with (25.5, 30] m/s, and T3 (n=338) with (30, 210] m/s. AIx 439 
exhibited a positive correlation with sPWV, with significant di:erences found between T1 and 440 
T2 as well as between T1 and T3 (both p < 0.05), though no statistical di:erence was 441 
observed between T2 and T3 (p > 0.05). Also, for sPWV no significant di:erences were 442 
detected between true and predicted AIx values across all tertile groups (all p > 0.05). 443 
 444 
 445 
Discussion 446 
 447 
Consistent and reliable identification of fiducial points in a cardiac waveform is essential for 448 
accurate PWA, making this precursor step crucial in clinical assessments [37]. While certain 449 
fiducial points, such as the peak systolic pressure, are easily identifiable due to their distinct 450 
characteristics, others – like the dicrotic notch and the inflection point – are more 451 



challenging to define. This challenge is further amplified in noninvasive signals, where high-452 
frequency components tend to be attenuated, making these features less distinct. In the 453 
literature, there are several mathematical definitions used for the identification of these 454 
points [35], [38]. For example, Takazawa et al. used a conditional definition based on the 455 
fourth-order pressure derivative to determine whether the inflection point occurs before or 456 
after the systolic peak, followed by zero crossings to determine its precise location [34]. 457 
Other studies have used second order derivative crossings [36], while others have identified 458 
this point based on the intersection of tangents drawn at local minima and maxima in the 459 
waveform’s first derivative [26]. Similar trends can be observed for the identification of the 460 
dicrotic notch. While the notch is easily defined when distinctly visible, its definition can 461 
become ambiguous in cases where it is represented by an incisura, making its identification 462 
reliant on higher-order derivative behaviors [39], [40], [41], [42], [43]. Moreover, the diversity 463 
in waveform morphologies may necessitate di:erent identification strategies to ensure 464 
accurate detection across various patient populations and physiological conditions. 465 
Although these features are often easily identifiable by visual inspection from a trained 466 
individual, translating their characteristics into precise mathematical definitions is a 467 
complex task. This inherent complexity makes fiducial point detection particularly well-468 
suited for machine learning-based pattern recognition approaches, which can e:ectively 469 
capture subtle waveform variations and improve detection robustness.  470 
 471 
In this study, we evaluated multiple model architectures and preprocessing strategies to 472 
identify the optimal approach for fiducial point detection. Among the four tested 473 
architectures, the mcCNN demonstrated the lowest prediction error. This model processes 474 
the pressure signal along with its first and second derivatives to identify fiducial points, 475 
significantly outperforming the single-channel CNN model in terms of MAE (p<0.05). This 476 
improvement suggests that incorporating the pressure signal’s derivatives provided 477 
additional valuable information for the pattern recognition task. Interestingly, this result 478 
aligns with empirical strategies commonly described in the literature, where higher-order 479 
derivatives are employed to identify these fiducial points as signal characteristics are more 480 
apparent [34], [36]. Given that CNN models rely on filters to extract patterns from signals, 481 
this additional information from the waveform derivatives appears to enhance model 482 
performance e:ectively.  483 
 484 
As part of the model comparison, we also assessed the performance of an empirical method 485 
based on conventional definitions of fiducial points found in the literature [34], [43]. As 486 
shown in Figure 2 and Table S3 in the supplementary material, the machine learning models 487 
strongly outperformed the empirical method. The prediction of the inflection point, 𝑡!, 488 
exhibited a wide error distribution, with interquartile ranges between -74 to 137 ms. This 489 
suggests that the empirical method frequently misidentified early systolic peaks as late 490 
systolic peaks, or vice versa, highlighting the di:iculty in defining mathematical rules to 491 
classify such points. Another notable observation from this analysis is that the fNN method 492 
achieved only slightly lower performance than the mcCNN (mcCNN MAE = 6 ms; fNN MAE = 493 
12.5 ms), while maintaining a substantially smaller model size (mcCNN = 257k parameters; 494 
fNN = 15.5K parameters). Although the mcCNN model was chosen for downstream analysis 495 



due to superior performance, these results highlight the e:ectiveness of spectral machine 496 
learning in developing compact yet accurate models [15], [44], [45].  497 
 498 
Our findings further demonstrated that preprocessing strategies applied to the mcCNN 499 
model improved performance. The most notable improvement resulted from the data 500 
augmentation strategy, which involved modifying the input data such that a single data point 501 
was used multiple times in the training set with different configurations. The base dataset 502 
preprocessing included normalizing all input waveforms to a uniform length of 1000 units 503 
and standardizing the amplitude to have zero mean and unit standard deviation. Two data 504 
augmentation strategies were then applied: (1) rescaling the waveform amplitudes and (2) 505 
truncating and resampling the waveforms. Since the inflection point and dicrotic notch 506 
follow physiological phenomena, they tend to occur in relatively consistent locations. 507 
Truncating and resampling shifted the location of these fiducial points within the waveform 508 
while preserving its key features. This strategy aimed to prevent the model from learning a 509 
fixed positional bias and instead focus on recognizing signal-based characteristics. 510 
Similarly, rescaling the waveform amplitude was designed to prevent the model from relying 511 
on amplitude patterns and instead promote recognition of relevant waveform features. 512 
Conceptually, these data augmentation strategies were intended to expand the effective 513 
size of the training dataset by allowing a single real data point to contribute multiple useful 514 
and non-redundant samples. This is particularly important in clinical data applications, 515 
where data collection is often challenging and time-consuming. By engineering effective 516 
augmentation techniques, we can maximize the utility of available data and improve model 517 
robustness in real-world scenarios. 518 
 519 
The variability in waveform morphology is highly prevalent in noninvasive datasets, making 520 
it crucial for the model to generalize across the entire spectrum. To assess this, we first 521 
examined how prediction errors translated to the physical placement of fiducial points. As 522 
shown in Figure 3B, across the MAE spectrum—from the 5th percentile to the 95th 523 
percentile—the placement of fiducial points remained well-preserved. We further 524 
investigated how the model’s predictions varied with waveform morphology, measured 525 
using the AIx as defined by Murgo et al. [46]. As shown in Figure 5, the model accurately 526 
identified fiducial points across the full spectrum of waveform morphologies—Type A, B, and 527 
C—correctly distinguishing early and late systolic peaks and appropriately placing the 528 
dicrotic notch, whether represented by a distinct notch or an incisura. These results 529 
demonstrate the model's strong generalizability to waveforms with diverse morphologies, 530 
which are commonly encountered in clinical measurements. 531 
 532 
Accurate fiducial point detection is crucial for consistent PWA. While our detection method 533 
introduces minimal error (MAE = 5 ms), the error is su:iciently small to ensure a strong one-534 
to-one correlation between waveform parameters measured using predicted fiducial points 535 
and those measured with human-annotated points (AIx R2=0.980; SPTI R2=0.975; ESP 536 
R2=0.998). This level of precision is particularly important, as PWA is widely getting popular 537 
in both research and clinical settings to extract valuable information from pressure 538 
waveforms and aid in diagnostic assessments [16], [47], [48], [49], [50]. Arterial sti:ness is 539 



an established independent predictor of adverse cardiovascular events and PWA is a key 540 
method for assessing this parameter [51], [52], [53], [54]. AIx is closely linked to arterial 541 
properties, particularly through variations in pulse wave velocity and wave arrival time. As 542 
arterial sti:ness increases, the pulse wave travels faster, causing the reflected wave from 543 
peripheral sites to return earlier during systole [55]. This premature arrival amplifies systolic 544 
pressure, thereby increasing left ventricular afterload [55]. In this study, we demonstrated 545 
the inverse relationship between AIx and PTT – the time of pressure wave propagation 546 
between two points along the arterial system [56]. Additionally, our findings demonstrate 547 
that a longer transit time reduces the reflected wave contribution to afterload, as measured 548 
by lower AIx values. Given that AIx is highly dependent on the precise and consistent 549 
identification of the waveform’s inflection point [57], our results further highlight the critical 550 
role of accurate fiducial point detection for ensuring reliable PWA measurements. Therefore, 551 
we envision that PulseAI could be directly integrated into PWA of cardiac pressure waveform 552 
to perform single-site monitoring of arterial sti:ness via AIx.  553 
 554 
This study and its models have some limitations. First, the models were trained only on 555 
waveforms from a brachial cuff system in sSBP hold. Since pressure waveform morphology 556 
varies throughout the arterial tree, these models may not perform optimally on waveforms 557 
from different measurement sites or modalities. Expanding the training dataset to include 558 
diverse waveform sources is essential for broader applicability. Another limitation is the 559 
trade-off between generalizability and accuracy. While our ML model effectively handles 560 
diverse waveform morphologies, this flexibility may reduce precision in highly consistent 561 
waveform patterns. In such cases, empirical methods may outperform the model, as they 562 
can achieve near-perfect accuracy when waveform characteristics are stable and well-563 
defined. However, in real-world clinical data, where waveform variability is common, our 564 
model's adaptability is key to ensuring reliable performance across different patient profiles 565 
and conditions. Lastly, we acknowledge the ongoing debate in the literature regarding the 566 
use of AIx to assess arterial stiffness. At the level of wave dynamics, AIx is governed by 567 
arterial wave reflections and vascular properties, however several physiological factors 568 
strongly modulate this relationship. As such, some studies have reported weak or 569 
inconsistent associations between AIx and arterial stiffness [58], [59], [60]. While this study 570 
is motivated by the clinical relevance of AIx, we recognize that AIx might not always serve as 571 
a standalone assessment of arterial stiffness.  572 
 573 
 574 
Conclusion 575 
 576 
Our study developed and validated the PulseAI method for identifying 𝑡!  and 𝑡" on a cardiac 577 
waveform to serve as a tool for monitoring arterial sti:ness from single-site pressure 578 
measurements. PulseAI was trained to predict the location of fiducial points from resampled 579 
and standardized pressure waveforms measured using a brachial cu: in the sSBP hold. The 580 
optimized model demonstrated strong predictive accuracy, achieving a MAE of 9.4 ms 581 
overall, with errors of 12.6 ms for 𝑡!  and of 6.2 ms for 𝑡", both of which fall within the 582 
acceptance error range of 30ms. Accurate fiducial point detection is the foundation for 583 



reliable PWA, which enabled precise measurements of AIx, SPTI, and ESP using the 584 
predicted fiducial points. AIx from the brachial waveform revealed an inverse relationship 585 
with PTT, a surrogate metric of PWV, consistent with established arterial sti:ness metrics. 586 
These results highlighted that AIx measured at the brachial is sensitive to elevated arterial 587 
sti:ness. In conclusion, this study demonstrated that machine learning-based fiducial point 588 
detection provides a reliable approach for accurate PWA and a practical tool for single-site 589 
assessment of arterial sti:ness-related metrics. 590 

 591 



Acknowledgements 592 
 593 
Part of figure 1 and the Graphical Abstract were generated with adapted illustrations from 594 
Servier Medical Art, provided by Servier and licensed under a Creative Commons 595 
Attribution 3.0 Unported License. 596 
 597 
 598 
Data Availability 599 
 600 
Data were obtained from a data transfer and use agreement between Caltech and Avicena 601 
LLC (d.b.a. Ventric Health).   602 
 603 
 604 
Declaration of Competing Interests 605 
 606 
AT is a consultant for Avicena LLC but declares no non-financial competing interests. MG is 607 
a co-founder of Avicena LLC but declares no non-financial competing interests. All other 608 
authors declare no financial and non-financial competing interests. 609 
 610 
 611 
Declaration of generative AI and AI-assisted technologies in the manuscript 612 
preparation process 613 
 614 
During the preparation of this work the author(s) used ChatGPT for proofreading and editing 615 
purposes. After using this tool/service, the author(s) reviewed and edited the content as 616 
needed and take(s) full responsibility for the scientific content and accuracy of the 617 
published article. 618 
 619 
References 620 
 621 
[1] S. S. Martin et al., “2024 Heart Disease and Stroke Statistics: A Report of US and Global 622 

Data From the American Heart Association,” Circulation, vol. 149, no. 8, Feb. 2024, doi: 623 
10.1161/CIR.0000000000001209. 624 

[2] S. Laurent et al., “Aortic Sti:ness Is an Independent Predictor of All-Cause and 625 
Cardiovascular Mortality in Hypertensive Patients,” Hypertension, vol. 37, no. 5, pp. 626 
1236–1241, May 2001, doi: 10.1161/01.HYP.37.5.1236. 627 

[3] J. He and P. K. Whelton, “Elevated systolic blood pressure and risk of cardiovascular 628 
and renal disease: overview of evidence from observational epidemiologic studies and 629 
randomized controlled trials,” Am Heart J, vol. 138, no. 3 Pt 2, pp. 211–219, Sep. 1999, 630 
doi: 10.1016/s0002-8703(99)70312-1. 631 

[4] K. Sutton-Tyrrell et al., “Elevated Aortic Pulse Wave Velocity, a Marker of Arterial 632 
Sti:ness, Predicts Cardiovascular Events in Well-Functioning Older Adults,” 633 
Circulation, vol. 111, no. 25, pp. 3384–3390, Jun. 2005, doi: 634 
10.1161/CIRCULATIONAHA.104.483628. 635 



[5] P. Boutouyrie, P. Chowienczyk, J. D. Humphrey, and G. F. Mitchell, “Arterial Sti:ness and 636 
Cardiovascular Risk in Hypertension,” Circulation Research, vol. 128, no. 7, pp. 864–637 
886, Apr. 2021, doi: 10.1161/CIRCRESAHA.121.318061. 638 

[6] G. F. Mitchell et al., “Arterial Sti:ness and Cardiovascular Events,” Circulation, vol. 121, 639 
no. 4, pp. 505–511, Feb. 2010, doi: 10.1161/CIRCULATIONAHA.109.886655. 640 

[7] J. P. Merillon, G. Motte, J. Fruchaud, C. Masquet, and R. Gourgon, “Evaluation of the 641 
elasticity and characteristic impedance of the ascending aorta in man,” Cardiovasc 642 
Res, vol. 12, no. 7, pp. 401–406, Jul. 1978, doi: 10.1093/cvr/12.7.401. 643 

[8] R. Asmar et al., “Assessment of Arterial Distensibility by Automatic Pulse Wave Velocity 644 
Measurement,” Hypertension, vol. 26, no. 3, pp. 485–490, Sep. 1995, doi: 645 
10.1161/01.HYP.26.3.485. 646 

[9] I. B. Wilkinson, K. M. Mäki-Petäjä, and G. F. Mitchell, “Uses of Arterial Sti:ness in 647 
Clinical Practice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 40, no. 5, pp. 648 
1063–1067, May 2020, doi: 10.1161/ATVBAHA.120.313130. 649 

[10] W. Jin, P. Chowienczyk, and J. Alastruey, “Estimating pulse wave velocity from the 650 
radial pressure wave using machine learning algorithms,” PLOS ONE, vol. 16, no. 6, p. 651 
e0245026, Jun. 2021, doi: 10.1371/journal.pone.0245026. 652 

[11] G. F. Mitchell et al., “Vascular Age Assessed From an Uncalibrated, Noninvasive 653 
Pressure Waveform by Using a Deep Learning Approach: The AI-VascularAge Model,” 654 
Hypertension, vol. 81, no. 1, pp. 193–201, Jan. 2024, doi: 655 
10.1161/HYPERTENSIONAHA.123.21638. 656 

[12] S. J. Al’Aref et al., “Clinical applications of machine learning in cardiovascular 657 
disease and its relevance to cardiac imaging,” Eur Heart J, vol. 40, no. 24, pp. 1975–658 
1986, Jun. 2019, doi: 10.1093/eurheartj/ehy404. 659 

[13] C. Krittanawong et al., “Machine learning prediction in cardiovascular diseases: a 660 
meta-analysis,” Sci Rep, vol. 10, no. 1, p. 16057, Sep. 2020, doi: 10.1038/s41598-020-661 
72685-1. 662 

[14] A. Tamborini, A. Aghilinejad, R. V. Matthews, and M. Gharib, “Machine Learning 663 
Reconstruction of Left Ventricular Pressure From Peripheral Waveforms,” JACC: 664 
Advances, vol. 4, no. 9, p. 102104, Sep. 2025, doi: 10.1016/j.jacadv.2025.102104. 665 

[15] A. Tamborini, A. Aghilinejad, and M. Gharib, “A spectral machine learning approach 666 
to derive central aortic pressure waveforms from a brachial cu:,” Proc. Natl. Acad. Sci. 667 
U.S.A., vol. 122, no. 9, p. e2416006122, Mar. 2025, doi: 10.1073/pnas.2416006122. 668 

[16] I. B. Wilkinson, H. MacCallum, L. Flint, J. R. Cockcroft, D. E. Newby, and D. J. Webb, 669 
“The influence of heart rate on augmentation index and central arterial pressure in 670 
humans,” J Physiol, vol. 525, no. Pt 1, pp. 263–270, May 2000, doi: 10.1111/j.1469-671 
7793.2000.t01-1-00263.x. 672 

[17] C.-H. Chen et al., “Estimation of Central Aortic Pressure Waveform by Mathematical 673 
Transformation of Radial Tonometry Pressure,” Circulation, vol. 95, no. 7, pp. 1827–674 
1836, Apr. 1997, doi: 10.1161/01.CIR.95.7.1827. 675 

[18] J. E. Sharman, J. E. Davies, C. Jenkins, and T. H. Marwick, “Augmentation Index, Left 676 
Ventricular Contractility, and Wave Reflection,” Hypertension, vol. 54, no. 5, pp. 1099–677 
1105, Nov. 2009, doi: 10.1161/HYPERTENSIONAHA.109.133066. 678 



[19] B. T. Costello, M. G. Schultz, J. A. Black, and J. E. Sharman, “Evaluation of a Brachial 679 
Cu: and Suprasystolic Waveform Algorithm Method to Noninvasively Derive Central 680 
Blood Pressure,” Am J Hypertens, vol. 28, no. 4, pp. 480–486, Apr. 2015, doi: 681 
10.1093/ajh/hpu163. 682 

[20] T. Weber et al., “Validation of a Brachial Cu:-Based Method for Estimating Central 683 
Systolic Blood Pressure,” Hypertension, vol. 58, no. 5, pp. 825–832, Nov. 2011, doi: 684 
10.1161/HYPERTENSIONAHA.111.176313. 685 

[21] A. Tamborini and M. Gharib, “Validation of a Suprasystolic Cu: System for Static and 686 
Dynamic Representation of the Central Pressure Waveform,” J Am Heart Assoc, vol. 13, 687 
no. 8, p. e033290, Apr. 2024, doi: 10.1161/JAHA.123.033290. 688 

[22] A. Lowe, W. Harrison, E. El-Aklouk, P. Ruygrok, and A. M. Al-Jumaily, “Non-invasive 689 
model-based estimation of aortic pulse pressure using suprasystolic brachial pressure 690 
waveforms,” J Biomech, vol. 42, no. 13, pp. 2111–2115, Sep. 2009, doi: 691 
10.1016/j.jbiomech.2009.05.029. 692 

[23] V. Fabian et al., “Noninvasive Assessment of Aortic Pulse Wave Velocity by the 693 
Brachial Occlusion-Cu: Technique: Comparative Study,” Sensors, vol. 19, no. 16, Art. 694 
no. 16, Jan. 2019, doi: 10.3390/s19163467. 695 

[24] J. Sugawara et al., “Brachial–ankle pulse wave velocity: an index of central arterial 696 
sti:ness?,” J Hum Hypertens, vol. 19, no. 5, pp. 401–406, May 2005, doi: 697 
10.1038/sj.jhh.1001838. 698 

[25] J. Sugawara, K. Hayashi, and H. Tanaka, “Distal Shift of Arterial Pressure Wave 699 
Reflection Sites with Aging,” Hypertension, vol. 56, no. 5, pp. 920–925, Nov. 2010, doi: 700 
10.1161/HYPERTENSIONAHA.110.160549. 701 

[26] S. Munir et al., “Peripheral Augmentation Index Defines the Relationship Between 702 
Central and Peripheral Pulse Pressure,” Hypertension, vol. 51, no. 1, pp. 112–118, Jan. 703 
2008, doi: 10.1161/HYPERTENSIONAHA.107.096016. 704 

[27] H. Ueda, Y. Nakayama, K. Tsumura, K. Yoshimaru, T. Hayashi, and J. Yoshikawa, 705 
“Inflection Point of Ascending Aortic Waveform Is a Powerful Predictor of Restenosis 706 
After Percutaneous Transluminal Coronary Angioplasty*,” American Journal of 707 
Hypertension, vol. 15, no. 9, pp. 823–826, Sep. 2002, doi: 10.1016/S0895-708 
7061(02)02981-3. 709 

[28] M. Sa:arpour et al., “Physiowise: A Physics-aware Approach to Dicrotic Notch 710 
Identification,” ACM Trans. Comput. Healthcare, vol. 4, no. 2, p. 10:1-10:17, Apr. 2023, 711 
doi: 10.1145/3578556. 712 

[29] R. Pal, A. Rudas, S. Kim, J. N. Chiang, A. Barney, and M. Cannesson, “An algorithm to 713 
detect dicrotic notch in arterial blood pressure and photoplethysmography waveforms 714 
using the iterative envelope mean method,” Computer Methods and Programs in 715 
Biomedicine, vol. 254, p. 108283, Sep. 2024, doi: 10.1016/j.cmpb.2024.108283. 716 

[30] R. Pal, A. Rudas, T. Williams, J. N. Chiang, A. Barney, and M. Cannesson, “Feature 717 
extraction tool using temporal landmarks in arterial blood pressure and 718 
photoplethysmography waveforms,” npj Cardiovasc Health, vol. 2, no. 1, p. 57, Nov. 719 
2025, doi: 10.1038/s44325-025-00096-0. 720 



[31] S. A. A. P. Hoeksel, J. R. C. Jansen, J. A. Blom, and J. J. Schreuder, “Detection of 721 
Dicrotic Notch in Arterial Pressure Signals,” J Clin Monit Comput, vol. 13, no. 5, pp. 309–722 
316, Sep. 1997, doi: 10.1023/A:1007414906294. 723 

[32] A. Tamborini and M. Gharib, “A Pneumatic Low-Pass Filter for High-Fidelity Cu:-724 
Based Pulse Waveform Acquisition,” Ann Biomed Eng, vol. 51, no. 11, pp. 2617–2628, 725 
Nov. 2023, doi: 10.1007/s10439-023-03312-z. 726 

[33] A. Tamborini and M. Gharib, “Validation of a Suprasystolic Cu: System for Static and 727 
Dynamic Representation of the Central Pressure Waveform,” J Am Heart Assoc, vol. 13, 728 
no. 8, p. e033290, Apr. 2024, doi: 10.1161/JAHA.123.033290. 729 

[34] K. Takazawa, N. Tanaka, K. Takeda, F. Kurosu, and C. Ibukiyama, “Underestimation 730 
of Vasodilator E:ects of Nitroglycerin by Upper Limb Blood Pressure,” Hypertension, 731 
vol. 26, no. 3, pp. 520–523, Sep. 1995, doi: 10.1161/01.HYP.26.3.520. 732 

[35] L. Peter, J. Kracik, M. Cerny, N. Noury, and S. Polzer, “Mathematical Model Based on 733 
the Shape of Pulse Waves Measured at a Single Spot for the Non-Invasive Prediction of 734 
Blood Pressure,” Processes, vol. 8, no. 4, Art. no. 4, Apr. 2020, doi: 10.3390/pr8040442. 735 

[36] K. Takazawa et al., “Assessment of Vasoactive Agents and Vascular Aging by the 736 
Second Derivative of Photoplethysmogram Waveform,” Hypertension, vol. 32, no. 2, pp. 737 
365–370, Aug. 1998, doi: 10.1161/01.HYP.32.2.365. 738 

[37] M. Z. Suboh, R. Jaafar, N. A. Nayan, N. H. Harun, and M. S. F. Mohamad, “Analysis on 739 
Four Derivative Waveforms of Photoplethysmogram (PPG) for Fiducial Point Detection,” 740 
Front. Public Health, vol. 10, Jun. 2022, doi: 10.3389/fpubh.2022.920946. 741 

[38] L. M. Van Bortel et al., “Non-invasive assessment of local arterial pulse pressure: 742 
comparison of applanation tonometry and echo-tracking,” Journal of Hypertension, vol. 743 
19, no. 6, p. 1037, Jun. 2001. 744 

[39] M. C. Kyle and E. D. Freis, “Computer identification of systolic time intervals,” 745 
Computers and Biomedical Research, vol. 3, no. 6, pp. 637–651, Dec. 1970, doi: 746 
10.1016/0010-4809(70)90031-5. 747 

[40] R. H. Swatzell, W. H. Bancroft, J. Macy, and E. E. Eddleman, “The on-line computer 748 
system for determining the systolic time intervals,” Computers and Biomedical 749 
Research, vol. 6, no. 5, pp. 465–473, Oct. 1973, doi: 10.1016/0010-4809(73)90079-7. 750 

[41] M. J. Oppenheim and D. F. Sittig, “An Innovative Dicrotic Notch Detection Algorithm 751 
Which Combines Rule-Based Logic with Digital Signal Processing Techniques,” 752 
Computers and Biomedical Research, vol. 28, no. 2, pp. 154–170, Apr. 1995, doi: 753 
10.1006/cbmr.1995.1011. 754 

[42] L. Peter, N. Noury, M. Cerny, and I. Nykl, “Comparison of methods for the evaluation 755 
of NIBP from pulse transit time,” in 2016 38th Annual International Conference of the 756 
IEEE Engineering in Medicine and Biology Society (EMBC), Aug. 2016, pp. 4244–4247. 757 
doi: 10.1109/EMBC.2016.7591664. 758 

[43] P. S. Nandi and D. H. Spodick, “Determination of systolic intervals utilizing the 759 
carotid first derivative,” American Heart Journal, vol. 86, no. 4, pp. 495–500, Oct. 1973, 760 
doi: 10.1016/0002-8703(73)90141-5. 761 

[44] A. Aghilinejad, A. Tamborini, and M. Gharib, “A new methodology for determining the 762 
central pressure waveform from peripheral measurement using Fourier-based machine 763 



learning,” Artificial Intelligence in Medicine, p. 102918, Jun. 2024, doi: 764 
10.1016/j.artmed.2024.102918. 765 

[45] A. Aghilinejad and M. Gharib, “Assessing pressure wave components for aortic 766 
sti:ness monitoring through spectral regression learning,” European Heart Journal 767 
Open, vol. 4, no. 3, p. oeae040, May 2024, doi: 10.1093/ehjopen/oeae040. 768 

[46] J. P. Murgo, N. Westerhof, J. P. Giolma, and S. A. Altobelli, “Aortic input impedance in 769 
normal man: relationship to pressure wave forms.,” Circulation, vol. 62, no. 1, pp. 105–770 
116, Jul. 1980, doi: 10.1161/01.CIR.62.1.105. 771 

[47] M. F. O’Rourke and D. E. Gallagher, “Pulse wave analysis,” J Hypertens Suppl, vol. 772 
14, no. 5, pp. S147-157, Dec. 1996. 773 

[48] I. B. Wilkinson et al., “Reproducibility of pulse wave velocity and augmentation index 774 
measured by pulse wave analysis,” Journal of Hypertension, vol. 16, no. 12, p. 2079, 775 
Dec. 1998. 776 

[49] A. Tamborini, A. Aghilinejad, and M. Gharib, “Abstract 4141635: Reconstructing 777 
Invasive Aortic Pressure Waveforms from Non-Invasive Brachial Measurements Using a 778 
Machine Learning Approach,” Circulation, vol. 150, no. Suppl_1, pp. A4141635–779 
A4141635, Nov. 2024, doi: 10.1161/circ.150.suppl_1.4141635. 780 

[50] A. Aghilinejad, A. Tamborini, and M. Gharib, “Abstract 4142004: Predicting 781 
Cardiovascular Disease Events Using Uncalibrated Non-invasive Carotid Pressure 782 
Wave Components from Spectral Regression Learning,” Circulation, vol. 150, no. 783 
Suppl_1, pp. A4142004–A4142004, Nov. 2024, doi: 10.1161/circ.150.suppl_1.4142004. 784 

[51] W. W. Nichols, “Clinical measurement of arterial sti:ness obtained from 785 
noninvasive pressure waveforms,” American Journal of Hypertension, vol. 18, no. S1, 786 
pp. 3S-10S, Jan. 2005, doi: 10.1016/j.amjhyper.2004.10.009. 787 

[52] J. J. Oliver and D. J. Webb, “Noninvasive Assessment of Arterial Sti:ness and Risk of 788 
Atherosclerotic Events,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 789 
4, pp. 554–566, Apr. 2003, doi: 10.1161/01.ATV.0000060460.52916.D6. 790 

[53] S. Meaume, A. Benetos, O. F. Henry, A. Rudnichi, and M. E. Safar, “Aortic Pulse Wave 791 
Velocity Predicts Cardiovascular Mortality in Subjects >70 Years of Age,” 792 
Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 12, pp. 2046–2050, Dec. 793 
2001, doi: 10.1161/hq1201.100226. 794 

[54] A. Aghilinejad, A. Tamborini, and M. Gharib, “Decoding vascular age from brachial 795 
waveform morphology via machine learning and model-based data augmentation,” 796 
Mach. Learn.: Health, vol. 1, no. 1, p. 015006, Dec. 2025, doi: 10.1088/3049-797 
477X/adf74f. 798 

[55] W. W. Nichols and D. G. Edwards, “Arterial Elastance and Wave Reflection 799 
Augmentation of Systolic Blood Pressure: Deleterious E:ects and Implications for 800 
Therapy,” J Cardiovasc Pharmacol Ther, vol. 6, no. 1, pp. 5–21, Mar. 2001, doi: 801 
10.1177/107424840100600102. 802 

[56] Y.-L. Zhang, Y.-Y. Zheng, Z.-C. Ma, and Y.-N. Sun, “Radial pulse transit time is an 803 
index of arterial sti:ness,” Hypertens Res, vol. 34, no. 7, pp. 884–887, Jul. 2011, doi: 804 
10.1038/hr.2011.41. 805 

[57] M. F. O’Rourke and A. L. Pauca, “Augmentation of the aortic and central arterial 806 
pressure waveform,” Blood Pressure Monitoring, vol. 9, no. 4, p. 179, Aug. 2004. 807 



[58] P. S. Lacy, D. G. O’Brien, A. G. Stanley, M. M. Dewar, P. P. Swales, and B. Williams, 808 
“Increased pulse wave velocity is not associated with elevated augmentation index in 809 
patients with diabetes,” Journal of Hypertension, vol. 22, no. 10, p. 1937, Oct. 2004. 810 

[59] A. Hughes et al., “Limitations of Augmentation Index in the Assessment of Wave 811 
Reflection in Normotensive Healthy Individuals,” PloS one, vol. 8, p. e59371, Mar. 2013, 812 
doi: 10.1371/journal.pone.0059371. 813 

[60] F. Fantin, A. Mattocks, C. J. Bulpitt, W. Banya, and C. Rajkumar, “Is augmentation 814 
index a good measure of vascular sti:ness in the elderly?,” Age Ageing, vol. 36, no. 1, 815 
pp. 43–48, Jan. 2007, doi: 10.1093/ageing/afl115. 816 

 817 



Tables 818 
 819 

Variable Quantity (n=145) 

Age, years 66 ± 9 

Height, cm 170 ± 10 

Weight, kg 84.6 ± 19.2 

BMI, kg/m^2 29.0 ± 5.5 

Male, n (%) 88 (61%) 

White, n (%) 96 (66%) 

Smoker, n (%) 22 (15%) 

Diabetes, n (%) 51 (35%) 

Hypertension, n (%) 115 (79%) 

Hyperlipidemia, n (%) 107 (74%) 

Table 1 – Study population characteristics.  820 
 821 



  Experiment Number 
 

Metric 1 2 3 4 5 6 7 8 9 

ti 

r 0.85 0.88 0.86 0.92 0.86 0.91 0.89 0.91 0.89 

R2 0.71 0.77 0.74 0.85 0.74 0.83 0.79 0.82 0.79 

RMSE, ms 29 25 27 21 27 22 24 22 24 

Mean Difference, ms -7 -2 2 0 2 0 0 -1 -2 

Limits of Agreement, ms 54 49 53 41 52 42 47 44 47 

tn 

r 0.89 0.91 0.90 0.89 0.91 0.94 0.92 0.92 0.89 

R2 0.77 0.82 0.78 0.78 0.81 0.88 0.85 0.83 0.76 

RMSE, ms 19 17 18 18 17 14 15 16 19 

Mean Difference, ms 4 3 6 1 2 0 1 0 3 

Limits of Agreement, ms 37 32 34 36 33 27 30 32 37 

Table 2 – Prediction accuracy metrics for the cardiac wave fiducial point predictions for the 822 
hyperparameter and algorithm tuning experiments.  823 
 824 

 825 



Figures 826 
 827 

 828 
Figure 1 – Overview of the PulseAI method for fiducial point detection. (A) Conceptual 829 
overview of the PulseAI algorithm, including procedural steps and data flow. (B) Schematic 830 
representation of the study design and data utilization workflow. (C) Brachial pressure 831 
waveform with labeled fiducial points: peak time (tp), inflection point time (ti), and dicrotic 832 
notch time (tn). Shaded regions indicate the systolic and diastolic phases of the cardiac 833 
cycle. 834 

 835 



 836 
Figure 2 – Fiducial point prediction errors across di)erent model architectures. (A) and 837 
(B) show the prediction error (true – predicted) for the inflection point, 𝑡!, and the dicrotic 838 
notch, 𝑡", respectively. (C) Displays the mean absolute error (MAE) for fiducial point 839 
detection across various algorithms, including the convolutional neural network (CNN), 840 
multi-channel CNN (mcCNN), multi-layer perceptron (MLP), Fourier-based neural network 841 
(fNN), and the empirical model.  842 

 843 



 844 
Figure 3 – Performance of the optimized PulseAI model error in the test population. (A) 845 
Mean absolute error (MAE) distribution across the test population (n=1,054). (B) Five sample 846 
waveforms illustrating fiducial point predictions across the error spectrum at the 5th, 25th, 847 
50th, 75th and 95th percentile of MAE.  848 

 849 



 850 
Figure 4 – Prediction accuracy of PulseAI for pulse waveform fiducial points. (Top) True-851 
versus-predicted plots for fiducial points 𝑡!  and  𝑡", with the black solid line representing the 852 
line of proportionality. (Bottom) Bland-Altman plots for 𝑡!  and  𝑡" where the solid blue line 853 
indicates the mean di:erence, and the shaded area represents the limits of agreement.  854 
 855 
  856 

857 



 858 
Figure 5 – PulseAI fiducial point predictions versus true measurement across di)erent 859 
wave morphologies. True and predicted fiducial points are shown for waveforms classified 860 
based on the shape type according to Augmentation Index (AIx) morphology definitions.  861 
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 863 
Figure 6 – Evaluation of pulse waveform analysis (PWA) accuracy using PulseAI-864 
predicted fiducial points. (Top) True-versus-predicted plots for pulse waveform features 865 
extracted via PWA using true and predicted fiducial points. From left to right, the features 866 
include Augmentation Index (AIx), systolic pressure-time integral (SPTI), and end-systolic 867 
pressure (ESP). The black solid line represents the proportionality line. (Bottom) Bland-868 
Altman plots for the PWA features, with the solid blue line denoting the mean di:erence, and 869 
the shaded area representing the limits of agreement. 870 
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 872 
Figure 7 – Relationship between arterial sti)ness and PulseAI-derived Augmentation 873 
Index (AIx). AIx measurements are compared with pulse transit time (PTT) and surrogate of 874 
pulse wave velocity (sPWV) as indirect measures of arterial sti:ness. Statistical significance 875 
is marked as * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 876 
 877 


