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A B S T R A C T

Arterial stiffness is a fundamental characteristic of circulatory physiology and a well-established predictor of 
cardiovascular risk and mortality. However, routine clinical assessment remains limited by the need for dual-site 
measurements. To address this challenge, we developed a machine learning algorithm – PulseAI – for automated 
fiducial point detection on brachial cuff waveforms for single-site assessment of arterial stiffness. PulseAI was 
trained and evaluated using a clinical dataset comprising 5,215 waveforms from 145 heterogeneous subjects. 
Performance was assessed on fiducial point predictions accuracy (inflection point, ti, and dicrotic notch, tn) and 
downstream pulse waveform analysis (PWA) metrics. Our multi-channel convolutional neural network (PulseAI) 
reported a median [IQR] on mean absolute error for fiducial point detection of 5 [3, 10] ms. PulseAI demon
strated high accuracy in predicting ti (r = 0.913, p < 0.0001) and tn (r = 0.939, p < 0.0001), with an average 
prediction error of 12.6 ms and 6.2 ms for ti and tn, respectively. While the tn results are comparable to other 
academic models reporting ~10 ms errors, our approach provides both fiducial point indices from a single 
model. PWA features derived from PulseAI closely matched those derived from human-annotated labels, 
including systolic pressure–time integral (r = 0.988, p < 0.0001), augmentation index (AIx) (r = 0.990, p <
0.0001), and end systolic pressure (r = 0.998, p < 0.0001). AIx tertiles showed statistically significant association 
with height-adjusted pulse transit time (p < 0.05), used as a surrogate of arterial stiffness, demonstrating the 
model’s sensitivity to stiffness-related changes. These findings demonstrate that PulseAI enables accurate fiducial 
point detection and represents a clinically viable tool for automated, single-site monitoring of arterial stiffness.

1. Introduction

Despite significant advances in cardiovascular care, cardiovascular 
disease (CVD) remains the leading cause of mortality in developed 
countries [1]. While blood pressure (BP) is a well-established risk factor, 
additional markers have been shown to play a critical role in the 
development and progression of CVD [2–4]. Among these, arterial 
stiffness has emerged as an independent predictor of cardiovascular risk 
and mortality [5,6]. Large artery elasticity is a fundamental character
istic of circulatory physiology, helping to buffer the pulsatile flow 
generated by cardiac ejection during systole [7]. Pulse wave velocity 
(PWV) is a widely recognized metric for assessing arterial stiffness, 
calculated using the pulse transit time (PTT) and the propagation dis
tance between two measurement sites [8]. While PWV is considered the 
gold standard for arterial stiffness assessment, its reliance on dual-site 
measurement introduces practical challenges in clinical settings [9]. 

On one hand, efforts have been made to estimate PWV from single-point 
measurements using machine learning models, offering a potentially 
simpler alternative. Jin et al. developed a Gaussian Process Regression 
method to estimate PWV from selected waveform features [10]. Mitchell 
et al., using a deep learning approach, trained a convolutional neural 
network (CNN) to predict carotid-to-femoral PWV from single, uncali
brated waveforms acquired at the radial, brachial, or femoral sites [11]. 
Beyond these direct applications, machine learning is being widely 
adopted in cardiology for tasks including cardiovascular risk stratifica
tion, transfer functions, and medical image analysis, demonstrating its 
broad utility [12–15]. On the other hand, surrogate parameters have 
been investigated for this purpose. Augmentation index (AIx) has gained 
attention as a measure of systemic arterial stiffness derived from a single 
cardiac waveform measurement [16]. However, the clinical utility of 
such parameters is dependent not only on their theoretical significance 
but also on the reliability and precision of their measurement [16–18].

* Corresponding author.
E-mail address: atambori@caltech.edu (A. Tamborini). 

Contents lists available at ScienceDirect

Biomedical Signal Processing and Control

journal homepage: www.elsevier.com/locate/bspc

https://doi.org/10.1016/j.bspc.2026.109840
Received 22 April 2025; Received in revised form 26 January 2026; Accepted 9 February 2026  

Biomedical Signal Processing and Control 119 (2026) 109840 

Available online 14 February 2026 
1746-8094/© 2026 Published by Elsevier Ltd. 

https://orcid.org/0000-0001-7651-3505
https://orcid.org/0000-0001-7651-3505
https://orcid.org/0000-0001-5231-427X
https://orcid.org/0000-0001-5231-427X
mailto:atambori@caltech.edu
www.sciencedirect.com/science/journal/17468094
https://www.elsevier.com/locate/bspc
https://doi.org/10.1016/j.bspc.2026.109840
https://doi.org/10.1016/j.bspc.2026.109840


The first key factor influencing this accuracy is the reliability of pulse 
waveform acquisition. Increasing attention has been directed toward 
noninvasive systems such as brachial cuff devices, due to their ease of 
use and improved measurement repeatability—both essential for clin
ical adoption [19,20]. In this context, suprasystolic blood pressure 
(sSBP) measurements mode have gained prominence for its ability to 
capture detailed and feature rich pressure waveforms [14,15,19,21–24]. 
Beyond waveform acquisition, the accurate identification of fiducial 
points along the cardiac pressure waveform remains a critical challenge. 
These points correspond to key physiological events, such as the arrival 
of the reflected wave and the closure of the aortic valve, typically 
marked by the inflection point and the dicrotic notch, respectively. 
However, their morphology can vary significantly depending on the 
population and study characteristics. For instance, the dicrotic notch 
may appear as a distinct physical notch or a subtle incisura, while the 
inflection point can occur either before or after the systolic peak. This 
variability complicates the development of universally applicable 
mathematical rules for their detection, often leading researchers to rely 
on manual identification or study-specific criteria. For example, Suga
wara et al. used the fourth order derivative to find the systolic inflection 
point [25,26], Munir et al. used the first order derivatives and tangents 
to determine the location of the inflection point [27], and Ueda et al. 
used an experienced observed to measure the inflection point [28]. To 
this end, several efforts have been dedicated towards developing algo
rithmic approaches for automatic identification. Saffarpour et al. 
developed Physiowise, a physics-aware approach to dicrotic notch 
identification [29], Pal et al. pioneered an iterative envelope mean 
method for detection of the dicrotic notch [30,31], and Hoeksel et al. 
uses a three-element windkessel model to estimate flow from pressure 
and then identify the dicrotic notch [32]. While these methods showed 
promising results, they only focused on a single identification task and 
therefore require complementation with other methods for full detec
tion. With the substantial increment of healthcare dataset size, there is a 
growing need for comprehensive, high-precision, and automated tools 
to facilitate and standardize this process.

In this study, we assess the accuracy and generalizability of machine 
learning for fiducial point detection, specifically identifying the inflec
tion point and the dicrotic notch, using our model, PulseAI. We train and 
evaluate the model on a dataset of manually labeled and human- 
annotated cardiac pressure waveforms acquired from a brachial cuff 
system operating in sSBP mode [33]. To benchmark its performance, we 
compare PulseAI’s results against conventional mathematical methods 
described in the literature and use the 30 ms reported error ranges as an 
acceptance criteria [29,30]. To demonstrate the physiological relevance 
of our machine learning pipeline, we have also examined the association 
between arterial stiffness and AIx derived from our proposed algorithm. 
Lastly, in order to provide a standardized and accessible platform for 
researchers to integrate into their own studies, the optimized trained 
model of this study has been made publicly available on GitHub.

2. Methods

2.1. Clinical study design

Brachial pressure waveforms were recorded using a custom and 
laboratory-developed investigational brachial cuff device designed for 
high-resolution waveform acquisition [33]. The device has been previ
ously validated against intra-arterial measurements for waveform ac
curacy [21]. The device’s protocol first performed an oscillometric 
blood pressure measurement for calibration, followed by pulse wave
form capture using the inflate-and-hold methodology. This methodology 
was applied at the sSBP hold, defined as 35 mmHg above the systolic 
blood pressure (SBP), and maintained for 40 s.

The dataset analyzed in this study consists of brachial pressure 
waveforms collected during cardiac catheterization procedures. Mea
surements were performed with subjects in the supine position, and the 

brachial cuff was placed on the left arm following standard cuff place
ment guidelines. The study enrolled individuals aged 21 years or older 
who were referred for non-emergent left heart catheterization between 
September 2021 and September 2022. Exclusion criteria included recent 
severe cardiac events (within one week), inability to undergo routine 
blood pressure measurement, and contraindications to catheterization. 
Simultaneous aortic catheterization waveforms were recorded during 
brachial cuff measurements to enable PTT calculations. The signals were 
captured at a sampling rate of 1 kHz.

The study was approved by the Institutional Review Board of 
Western and Salus. Written informed consent was obtained from all 
participants before the procedure. The study adhered to the principles of 
the Declaration of Helsinki.

2.2. Study population

The study population included 145 subjects with a mean age of 66 ±
9 years, 88 males (61%), and a mean body mass index (BMI) of 29.0 ±
5.5 kg/m2. Patient characteristics for the entire study population are 
summarized in Table 1. The analysis generated a dataset of 5215 
waveforms from the brachial cuff during the sSBP hold phase. The dis
tribution of cardiac cycles per individual showed a median of 37, with 
interquartile ranges of [31,34] cycles per subject, a maximum of 62, and 
a minimum of 2 (Fig. S2). The study population was partitioned into 
three cohorts at the subject level using a 70%-10%-20% train-validation- 
test split, resulting in cohorts of 102, 14, and 29 subjects, and 3646, 515, 
and 1054 waveforms, respectively (Fig. 1B). Table S2 provides a sum
mary of the population characteristics for the training, validation, and 
test cohorts. Fig. S3 shows the cumulative distribution function of the 
fiducial points in the time-based format as well as the unit-normalized 
configuration; the train-validation-test cohorts showed overlapping 
distributions for both ̃ti and ̃tn.

2.3. Data and signal preprocessing

The brachial cuff recordings were manually inspected to remove 
instances of apparatus malfunction, procedural errors, saturated sensor 
output, and arrhythmias. The sSBP pressure signal recordings from the 
brachial cuff were segmented into individual cardiac cycles using the 
foot-to-foot partition method [8]. Each cardiac cycle can be represented 
mathematically as, 

pm = p(tm),m = 0,1,⋯,N − 1. (1) 

where N is the length of the cardiac cycle. This segmentation resulted in 
a dataset containing multiple cardiac cycles for each subject, with each 
cycle treated as a unique but dependent data point. While cycles from 
the same subject were considered distinct, they were not independent 
due to the shared underlying physiological characteristics. Fiducial 
points of interest on the pressure waveform – namely the peak pressure, 
inflection point and dicrotic notch − were manually identified for the 
entire dataset: 

Table 1 
Study population characteristics.

Variable Quantity (n = 145)

Age, years 66 ± 9
Height, cm 170 ± 10
Weight, kg 84.6 ± 19.2
BMI, kg/m2 29.0 ± 5.5
Male, n (%) 88 (61%)
White, n (%) 96 (66%)
Smoker, n (%) 22 (15%)
Diabetes, n (%) 51 (35%)
Hypertension, n (%) 115 (79%)
Hyperlipidemia, n (%) 107 (74%)
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tp = time of peak pressure 

ti = time of inflection point 

tn = time of dicrotic notch 

These fiducial points represent key pressure waveform features: peak 
time corresponds to maximal systolic pressure, the inflection time marks 
the arrival of the reflected wave, and the dicrotic notch time indicates 
the closure of the aortic valve. The cardiac cycles along with the fiducial 
points were combined to generate the dataset for the study.

Both dataset components – fiducial points and brachial cuff wave
forms – were preprocessed before being fed into the machine learning 
portion of the study. The fiducial points were converted to unit- 

normalized quantities by dividing for the duration of the cardiac 
cycle, denoted T, as shown below: 

t̃p =
tp
T
; t̃i =

ti
T
; t̃n =

tn
T

(2) 

This normalization ensures that the fiducial points all lie within the 
range 0 to 1, which is optimal for an ML model output.

Brachial cuff waveforms were individually resampled to a fixed 
length of 1000 samples to ensure consistent input size to the ML model. 
Resampling was performed using a Fourier-based methodology along 
the time axis, which is outlined in Algorithm 1. Resampled waveforms 
were standardized to a mean value of zero and a standard deviation of 
one. Upon performing both procedures, we define these as resampled 
and normalized waveforms. The first and second derivatives were 

Fig. 1. Overview of the PulseAI method for fiducial point detection. (A) Conceptual overview of the PulseAI algorithm, including procedural steps and data flow. 
(B) Schematic representation of the study design and data utilization workflow. (C) Brachial pressure waveform with labeled fiducial points: peak time (tp), inflection 
point time (ti), and dicrotic notch time (tn). Shaded regions indicate the systolic and diastolic phases of the cardiac cycle.
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computed using the finite difference method on the resampled and 
normalized waveforms; interior points were computed with second- 
order accurate central differences while at the boundaries we used 
one-sided differences to preserve signal length. This signal preprocess
ing generated a dataset of waveforms – signal, first derivative and sec
ond derivative – with fixed length, centered around zero, and a standard 
deviation of one.

Algorithm 1: Fourier-based Resampling Method

Input: waveform signal p(t), desired signal length M
Output: resampled signal ṕ (t)
1. Discrete Fourier Transform

Convert signal from time domain to frequency domain:

Pk =
∑N− 1

m=0
pme−

j2πkm
N ,k = 0,1,⋯,N − 1

where Pk are the frequency components of the original signal, and N is the length of 
the original signal

2. Frequency Domain Resampling
If M > N, apply zero-padding to the frequency components:

Pʹ
k =

⎧
⎨

⎩

Pk, k = 0,⋯,N/2
0,N/2 < k < M − N/2

Pk, k = M − N/2,⋯,M − 1
If M < N, truncate the frequency components:

Pʹ
k = Pk,k = 0,1,⋯,M − 1.

3. Inverse Discrete Fourier Transform
Convert the signal back to the time domain:

ṕj =
1
M
∑M− 1

k=0
Pʹ

ke−
jπkj
M , j = 0,1,⋯,M − 1.

The dataset was partitioned for standard model training and testing 
using a 70%-10%-20% train-validation-test split ratio. Given the 
dependence of cardiac cycles within a given subject, the split was per
formed at the subject level rather than the cardiac cycle level to prevent 
data leakage. The training cohort was used for model training, the 
validation cohort for early stopping during training, and the testing 
cohort for model evaluation.

2.4. PulseAI method

The PulseAI method is a machine learning approach developed to 
identify fiducial points on the cardiovascular pressure waveform. The 
model takes as input a single cardiac cycle and outputs the unit- 
normalized indices of the fiducial points. In this model implementa
tion, the PulseAI method was trained to predict the relative time position 
of the inflection point and the dicrotic notch for the brachial pressure 
waveforms in the sSBP hold. Fig. 1a shows an overview of the multi- 
channel CNN (mcCNN) model implemented for PulseAI. The PulseAI 
method was optimized for predicting the fiducial points ti and tn through 
a two-stage process: model architecture evaluation and hyperparameter 
tuning. Fig. S1 in the supplementary material provides an overview of 
the optimization approach used in this study.

In the first stage, we evaluated four model architectures: a CNN, a 
mcCNN, a multilayer perceptron (MLP), and a Fourier-based Neural 
Network (fNN). At this stage, all models used an element-wise mean- 
square error loss function.

The CNN model consisted of three convolutional blocks, each 
sequentially comprising a 1D convolutional layer, ReLU activation, and 
max pooling. The convolutional layers had 8, 16, and 16 filters, 
respectively, with a kernel size of 3, a stride of 1, and padding of 1. One- 
dimensional max-pooling with a kernel size of 2 and a stride of 2 was 
applied after each block to progressively downsample the feature maps. 
The output of the final convolutional block was flattened and passed 
through two fully connected layers: the first with 128 units and the 
second mapping to the two output classes. The model processed a single- 
channel input, representing the resampled and normalized waveform of 
length 1000. The mcCNN model had the same architecture as the CNN 
model but processed three input channels: the resampled and normal
ized waveform, its first derivative, and its second derivative, each of 
length 1000. The use of derivatives was intended to capture high- 

frequency features embedded within the signal shape.
The MLP model consisted of four fully connected layers, mapping an 

input of 1000 units to two output units. The three hidden layers con
tained 128, 64, and 32 units, respectively, each followed by a ReLU 
activation function and a dropout rate of 0.35. The fNN model was a 
fully connected feedforward neural network operating in the frequency 
domain. The input signal was first transformed into the frequency 
domain, truncated to retain a limited number of modes, then flattened 
into its real and imaginary components before being passed into the 
network. The network architecture beyond this preprocessing step was 
identical to the MLP model. The model architecture that yielded the best 
performance was selected for hyperparameter optimization.

The hyperparameter tuning phase focused on three key factors: loss 
function selection, data augmentation, and regularization. First, we 
compared model performance with different base loss functions: mean 
squared error (MSE), mean absolute error (MAE), and Huber loss with δ 
= 10 ms. A penalty term is added to each base loss function making the 
total loss: 

L total = L base + L penalty (3) 

The penalty term computes the average of all positive index differ
ences between the inflection point and dicrotic notch. This penalty 
effectively enforces the physiological constraint that the inflection point 
occurs before the dicrotic notch. 

L penalty =
1
n
∑n

i=1
max

(
0, Ŷ i,0 − Ŷ i,1

)
(4) 

where i∊{1,⋯, n} indexes the samples within the dataset.
Next, we investigated the impact of data augmentation, generating 

additional training signals by applying truncation and resampling, and 
scaling. Three augmentation strategies were evaluated: (1) truncation 
and resampling, (2) scaling, and (3) both applied sequentially. Finally, 
we explored regularization techniques, testing dropout, weight decay, 
and their combined effect. At each step, the best-performing model 
configuration was carried forward for further evaluation. This tuning 
process resulted in nine experimental scenarios, detailed in Table S1 in 
the supplementary material. Fig. S1 summarizes model selection and 
hyperparameter tuning.

2.5. Empirical method

The empirical method served as a reference for comparing model 
performance in identifying fiducial points along the pressure waveform. 
This approach was used to detect both the inflection point, ti, as well as 
the dicrotic notch, tn. The inflection point was determined using the 
fourth-order derivative, following the guidelines established by Taka
zawa et al. [35]. The dicrotic notch was identified as the first peak of the 
second derivative occurring after the minimum of the first derivative, as 
described by Peter et al. [36] and Takazawa et al. [37]. The mathe
matical steps behind the empirical method have been summarized in 
Algorithm 2.

Algorithm 2: Empirical Method for Calculating Fiducial Points

Input: waveform signal
Output: tp, ti, tn (fiducial point indices)
1. Compute Derivatives:

1.1. p(t)d1←∇p(t) (first derivative)
1.2. p(t)d2←∇p(t)d2 (second derivative)
1.3. p(t)d3←∇p(t)d2 (third derivative)
1.4. p(t)d4←∇p(t)d3 (fourth derivative)

2. Identify Maximum Value:
2.1. tp←argmax(p(t) )

3. Determine Slope at Maximum:
3.1. sloped4←p(tmax)d4

4. Identify Inflection Point:
If sloped4 > 0 (late systolic peak):

4.1. Identify zero-crossings of p(t)d4 (positive to negative)

(continued on next page)
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(continued )

Algorithm 2: Empirical Method for Calculating Fiducial Points

If at least two zero-crossings exist before tp:
ti← second zero-crossing of p(t)d4

Else:
ti←None

Else (early systolic peak):
4.2. Identify zero-crossings of p(t)d4 (negative to positive)
If at least three zero-crossings exist after tp:

ti← third zero-crossing of p(t)d4
Else:

ti←None
5. Identify Dicrotic Notch:

5.1. td1,min←argmin
(
p(t)d1

)

5.2. tn←argmax
(

p
(
td1,min :

)

d2

)
+ td1,min

6. Return: 
(
tp , ti, tn

)

2.6. Hemodynamic analyses

Pressure waveforms captured with a brachial cuff system are in non- 
physiological units, as they represent the pressure fluctuations inside the 
cuff. To convert these waveforms into physiological units, we applied a 
previously validated calibration procedure using the blood pressure 
values from the oscillometric measurement [21]. The waveforms were 
scaled such that the peak pressure corresponds to SBP, and the base 
pressure corresponds to diastolic blood pressure (DBP). The calibration 
equation used is: 

pcalib =
p(t) − min(p(t) )

max(p(t) ) − min(p(t) )
*(SBP − DBP) + DBP (5) 

where pcalib represents the calibrated pressure waveform.
Pulse wave analysis (PWA) was performed on the calibrated wave

form to extract clinically significant parameters, including AIx, systolic 
pressure time integral (SPTI), and end-systolic pressure (ESP). These 
parameters were computed using both the measured (human-annotated) 
and PulseAI-generated fiducial points. Additionally, PTT—the foot-to- 
foot time difference between the start of the waveform at the central 
site (captured via catheter) and cuff waveforms—was calculated in 
milliseconds. PTT was further adjusted for subject height to derive a 
surrogate measure of PWV, herein denoted as sPWV, both of which serve 
as indicators of arterial stiffness [8]. 

AIx =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p
(
tp
)
− p(ti)

p
(
tp
)
− p(t0)

, if ti < tp

p(ti) − p
(
tp
)

p
(
tp
)
− p(t0)

, otherwise
(6) 

SPTI =
∫tn

t0

p(t)dt (7) 

ESP = p(tn) (8) 

PTT = tfoot,cath − tfoot,cuff (9) 

sPWV =
Height
PTT

(10) 

2.7. Statistical analyses

Fiducial point prediction accuracy was evaluated in the time domain. 
To recover the predicted fiducial point values, the unit-normalized 
predictions were multiplied by the cardiac cycle duration and rounded 
to the nearest millisecond (ms). Model performance was assessed by 
calculating the prediction error (true – predicted) for individual fiducial 
points, as well as the MAE for joint predictions. Several metrics were 

used to evaluate model accuracy, including the Pearson correlation co
efficient (r), coefficient of determination (R2), root mean squared error 
(RMSE), mean difference, and limits of agreement. The prediction ac
curacy for fiducial points and PWA-derived parameters was visualized 
using scatter plots of true-versus-predicted values and Bland-Altman 
analysis. Correlation strength was quantified using r and the intraclass 
correlation coefficient (ICC), along with 95% confidence intervals (95% 
CI). Bland-Altman analysis was also used to assess bias and limits of 
agreement. Significance level was set at a value of p < 0.05.

3. Results

3.1. Model development

The PulseAI model was trained on the training cohort (3,646 cardiac 
cycles) with an early stopping criterion based on the validation cohort 
(515 cardiac cycles) and evaluated on the testing cohort (1,054 cardiac 
cycles). Model architecture optimization, summarized in Fig. 2 and 
Table S3, was performed across four different model configurations and 
the empirical method. The mcCNN model demonstrated the highest 
fiducial point prediction accuracy, with a median [IQR] error (true −
predicted) of 0 [-7, 7.75] ms for ti and 1 [-3, 4] ms for tn. The fNN model 
had the second-best performance, with a median [IQR] error of − 3 [-17, 
13] ms for ti and − 1 [-7, 6] ms for tn. The combined MAE for fiducial 
point prediction was lowest for the mcCNN model (median [IQR] = 6 [3, 
12.5] ms) and highest for the empirical method (median [IQR] = 73 [56, 
96.5] ms). Both the mcCNN and fNN models significantly outperformed 
the other models in predicting ti and tn as measured with r and R2, as 
shown in Table S2. The algorithms were tested with cross-validation on 
incremental relative training sizes, the fNN and mcCNN significantly 
outperformed the other models across all training sizes (Fig. S4). Based 
on these results, the mcCNN architecture was selected for further tuning.

Hyperparameter tuning was performed sequentially to explore po
tential improvements in model performance. Three sets of experiments 
were conducted to evaluate the loss function (experiments #1–3), data 
augmentation strategies (experiments #4–6), and regularization 
methods (experiments #7–9). The first set of experiments (#1–3) indi
cated that the MAE base loss function produced the most accurate pre
dictions for ti (r = 0.88, R2 = 0.77, RMSE = 25 ms) and tn (r = 0.91, R2 =

0.82, RMSE = 17 ms), leading to its selection for subsequent experi
ments. The second set (#4–6) tested different data augmentation tech
niques. The truncate and resample method (experiment #4) yielded the 
best improvement for ti prediction (r = 0.92, R2 = 0.85, RMSE = 21 ms), 
while the combination of truncation and resampling, and scaling 
(experiment #6) provided the highest accuracy for tn (r = 0.94, R2 =

0.88, RMSE = 14 ms). Since the performance difference between ex
periments #4 and #6 for ti was minimal, the configuration from 
experiment #6 was chosen for further testing. Finally, experiments #7–9 
assessed different regularization techniques, but none resulted in 
improved prediction accuracy. A summary of the hyperparameter tun
ing results is provided in Table 2 and Fig. S5 in the supplementary 
material. Based on these findings, the final model configuration was 
selected from experiment #6. This corresponds to the mcCNN archi
tecture with an MAE base loss function and data augmentation using 
both the truncate and resample method along with scaling. Specifically, 
the mcCNN model takes three channels as inputs – waveform, first and 
second derivative – and has three convolutional blocks followed by fully 
connected layers. The convolutional blocks are each made up of a 1D 
convolutional layer, a ReLU activation and a max pooling step; con
volutional layers have 8, 16, and 16 dimensions, a kernel size of 3, and a 
stride and padding of 1. The fully connected layers convert feature maps 
to the fiducial point indices; the first layer is a dense layer with 128 units 
and ReLU activation and the output layer has 2 units.
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Fig. 2. Fiducial point prediction errors across different model architectures. (A) and (B) show the prediction error (true – predicted) for the inflection point, ti, 
and the dicrotic notch, tn, respectively. (C) Displays the mean absolute error (MAE) for fiducial point detection across various algorithms, including the convolutional 
neural network (CNN), multi-channel CNN (mcCNN), multi-layer perceptron (MLP), Fourier-based neural network (fNN), and the empirical model.

Table 2 
Prediction accuracy metrics for the cardiac wave fiducial point predictions for the hyperparameter and algorithm tuning experiments.

Experiment Number

Metric 1 2 3 4 5 6 7 8 9

ti r 0.85 0.88 0.86 0.92 0.86 0.91 0.89 0.91 0.89
R2 0.71 0.77 0.74 0.85 0.74 0.83 0.79 0.82 0.79
RMSE, ms 29 25 27 21 27 22 24 22 24
Mean Difference, ms − 7 − 2 2 0 2 0 0 − 1 − 2
Limits of Agreement, ms 54 49 53 41 52 42 47 44 47

tn r 0.89 0.91 0.90 0.89 0.91 0.94 0.92 0.92 0.89
R2 0.77 0.82 0.78 0.78 0.81 0.88 0.85 0.83 0.76
RMSE, ms 19 17 18 18 17 14 15 16 19
Mean Difference, ms 4 3 6 1 2 0 1 0 3
Limits of Agreement, ms 37 32 34 36 33 27 30 32 37

Fig. 3. Performance of the optimized PulseAI model error in the test population. (A) Mean absolute error (MAE) distribution across the test population (n =
1,054). (B) Five sample waveforms illustrating fiducial point predictions across the error spectrum at the 5th, 25th, 50th, 75th and 95th percentile of MAE.
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3.2. Model evaluation

The PulseAI model, incorporating the mcCNN architecture, MAE loss 
function, and selected data augmentation strategies, was evaluated on 
the test cohort (1,054 cardiac cycles). Fig. 3A presents the model’s MAE 
distribution, with a median [IQR] error of 5 [3,10] ms. Fig. 3B visualizes 
the positioning of true versus predicted fiducial points (ti and tn) across 
the entire error spectrum. The model reported an average MAE of 9.4 ms 
with a 95% confidence interval of [8.6, 10.1] and an average RMSE of 
18.1 ms with a confidence interval of [17.3, 19.0]. Fig. 4 illustrates the 
prediction accuracy for fiducial points using true-versus-predicted plots 
and Bland-Altman analysis. The ti point demonstrated a strong linear 
correlation (r = 0.913, p < 0.0001; ICC = 0.951) with no bias (B [LOA] 
= 0 [-42, 43] ms). Similarly, the tn point exhibited a strong linear cor
relation (r = 0.939, p < 0.0001; ICC = 0.958), with no observed bias (B 
[LOA] = 0 [-27, 27] ms). The average error in fiducial point identifi
cation was below the permitted error range of 30 ms for both ti (12.6 ms) 
and tn (6.2 ms). A stratified analysis of the PulseAI model performance 
with the mcCNN architecture was performed for age, gender, and hy
pertensive status, results summarized in Table S4. Fig. 5 qualitatively 
demonstrates that prediction accuracy is consistent across the three 
pressure waveform types—Type A, Type B, and Type C—classified based 
on AIx.

3.3. Physiological relevancy of the approach

The true and predicted fiducial points were used to extract clinically 
relevant features from the cardiac pressure waveform via PWA. Fig. 6
compares PWA accuracy using PulseAI-predicted fiducial points versus 
true measurements (human-annotated) for AIx, SPTI, and ESP. AIx 
exhibited a strong correlation between predicted and true values (r =
0.990, p < 0.0001; ICC = 0.995) with no detectable bias (B [LOA] = 0 [- 
9, 8] %). Similarly, SPTI demonstrated high agreement (r = 0.988, p <
0.0001; ICC = 0.994) with negligible bias (B [LOA] = 0.0 [-2.1, 2.1] %). 
ESP also showed excellent concordance (r = 0.998, p < 0.001; ICC =
0.999) and minimal bias (B [LOA] = -0.2 [-1.4, 1.1] mmHg).

AIx values, computed using both true and predicted fiducial points, 
were further analyzed in relation to arterial stiffness metrics, specifically 
PTT (in milliseconds) and sPWV (in meters per second) (Fig. 7). Three 
instances with non-physiological negative PTT values were excluded. A 
tertile analysis of PTT classified the population into three subgroups: T1 
(n = 362) with (8, 56] ms, T2 (n = 368) with (56, 66] ms, and T3 (n =
321) with (66, 85] ms. AIx demonstrated a clear inverse relationship 
with PTT, with significant differences observed between all tertiles (T1 
vs. T2, T2 vs. T3, and T1 vs. T3; all p < 0.05). Additionally, no significant 
differences were found between true and predicted AIx values within 
each tertile group (all p > 0.05).

A similar tertile analysis was conducted for sPWV, dividing the 
population into T1 (n = 351) with (19, 25.5] m/s, T2 (n = 362) with 
(25.5, 30] m/s, and T3 (n = 338) with (30, 210] m/s. AIx exhibited a 

Fig. 4. Prediction accuracy of PulseAI for pulse waveform fiducial points. (Top) True-versus-predicted plots for fiducial points ti and tn, with the black solid line 
representing the line of proportionality. (Bottom) Bland-Altman plots for ti and tn where the solid blue line indicates the mean difference, and the shaded area 
represents the limits of agreement.
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Fig. 5. PulseAI fiducial point predictions versus true measurement across different wave morphologies. True and predicted fiducial points are shown for 
waveforms classified based on the shape type according to Augmentation Index (AIx) morphology definitions.

Fig. 6. Evaluation of pulse waveform analysis (PWA) accuracy using PulseAI-predicted fiducial points. (Top) True-versus-predicted plots for pulse waveform 
features extracted via PWA using true and predicted fiducial points. From left to right, the features include Augmentation Index (AIx), systolic pressure–time integral 
(SPTI), and end-systolic pressure (ESP). The black solid line represents the proportionality line. (Bottom) Bland-Altman plots for the PWA features, with the solid blue 
line denoting the mean difference, and the shaded area representing the limits of agreement.
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positive correlation with sPWV, with significant differences found be
tween T1 and T2 as well as between T1 and T3 (both p < 0.05), though 
no statistical difference was observed between T2 and T3 (p > 0.05). 
Also, for sPWV no significant differences were detected between true 
and predicted AIx values across all tertile groups (all p > 0.05).

4. Discussion

Consistent and reliable identification of fiducial points in a cardiac 
waveform is essential for accurate PWA, making this precursor step 
crucial in clinical assessments [38]. While certain fiducial points, such as 
the peak systolic pressure, are easily identifiable due to their distinct 
characteristics, others – like the dicrotic notch and the inflection point – 
are more challenging to define. This challenge is further amplified in 
noninvasive signals, where high-frequency components tend to be 
attenuated, making these features less distinct. In the literature, there 
are several mathematical definitions used for the identification of these 
points [36,39]. For example, Takazawa et al. used a conditional defi
nition based on the fourth-order pressure derivative to determine 
whether the inflection point occurs before or after the systolic peak, 
followed by zero crossings to determine its precise location [35]. Other 
studies have used second order derivative crossings [37], while others 
have identified this point based on the intersection of tangents drawn at 
local minima and maxima in the waveform’s first derivative [27]. 
Similar trends can be observed for the identification of the dicrotic 
notch. While the notch is easily defined when distinctly visible, its 
definition can become ambiguous in cases where it is represented by an 
incisura, making its identification reliant on higher-order derivative 
behaviors [34,40–43]. Moreover, the diversity in waveform morphol
ogies may necessitate different identification strategies to ensure accu
rate detection across various patient populations and physiological 
conditions. Although these features are often easily identifiable by visual 
inspection from a trained individual, translating their characteristics 
into precise mathematical definitions is a complex task. This inherent 
complexity makes fiducial point detection particularly well-suited for 
machine learning-based pattern recognition approaches, which can 
effectively capture subtle waveform variations and improve detection 
robustness.

In this study, we evaluated multiple model architectures and pre
processing strategies to identify the optimal approach for fiducial point 

detection. Among the four tested architectures, the mcCNN demon
strated the lowest prediction error. This model processes the pressure 
signal along with its first and second derivatives to identify fiducial 
points, significantly outperforming the single-channel CNN model in 
terms of MAE (p < 0.05). This improvement suggests that incorporating 
the pressure signal’s derivatives provided additional valuable informa
tion for the pattern recognition task. Interestingly, this result aligns with 
empirical strategies commonly described in the literature, where higher- 
order derivatives are employed to identify these fiducial points as signal 
characteristics are more apparent [35,37]. Given that the CNN archi
tecture relies on filters to extract signal patterns, this additional infor
mation from the waveform derivatives appears to enhance model 
performance effectively.

As part of the model comparison, we also assessed the performance 
of an empirical method based on conventional definitions of fiducial 
points found in the literature [34,35]. As shown in Fig. 2 and Table S3 in 
the supplementary material, the machine learning models strongly 
outperformed the empirical method. The prediction of the inflection 
point, ti, exhibited a wide error distribution, with interquartile ranges 
between − 74 to 137 ms. This suggests that the empirical method 
frequently misidentified early systolic peaks as late systolic peaks, or 
vice versa, highlighting the difficulty in defining mathematical rules to 
classify such points. Another notable observation from this analysis is 
that the fNN method achieved only slightly lower performance than the 
mcCNN (mcCNN MAE = 6 ms; fNN MAE = 12.5 ms), while maintaining 
a substantially smaller model size (mcCNN = 257 k parameters; fNN =
15.5 K parameters). Although the mcCNN model was chosen for 
downstream analysis due to superior performance, these results high
light the effectiveness of spectral machine learning in developing 
compact yet accurate models [15,44,45].

Our findings further demonstrated that preprocessing strategies 
applied to the mcCNN model improved performance. The most notable 
improvement resulted from the data augmentation strategy, which 
involved modifying the input data such that a single data point was used 
multiple times in the training set with different configurations. The base 
dataset preprocessing included normalizing all input waveforms to a 
uniform length of 1000 units and standardizing the amplitude to have 
zero mean and unit standard deviation. Two data augmentation strate
gies were then applied: (1) rescaling the waveform amplitudes and (2) 
truncating and resampling the waveforms. Since the inflection point and 

Fig. 7. Relationship between arterial stiffness and PulseAI-derived Augmentation Index (AIx). AIx measurements are compared with pulse transit time (PTT) 
and surrogate of pulse wave velocity (sPWV) as indirect measures of arterial stiffness. Statistical significance is marked as * p < 0.05, ** p < 0.01, *** p < 0.001, **** 
p < 0.0001.
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dicrotic notch follow physiological phenomena, they tend to occur in 
relatively consistent locations. Truncating and resampling shifted the 
location of these fiducial points within the waveform while preserving 
its key features. This strategy aimed to prevent the model from learning 
a fixed positional bias and instead focus on recognizing signal-based 
characteristics. Similarly, rescaling the waveform amplitude was 
designed to prevent the model from relying on amplitude patterns and 
instead promote recognition of relevant waveform features. Conceptu
ally, these data augmentation strategies were intended to expand the 
effective size of the training dataset by allowing a single real data point 
to contribute multiple useful and non-redundant samples. This is 
particularly important in clinical data applications, where data collec
tion is often challenging and time-consuming. By engineering effective 
augmentation techniques, we can maximize the utility of available data 
and improve model robustness in real-world scenarios.

The variability in waveform morphology is highly prevalent in 
noninvasive datasets, making it crucial for the model to generalize 
across the entire spectrum. To assess this, we first examined how pre
diction errors translated to the physical placement of fiducial points. As 
shown in Fig. 3B, across the MAE spectrum—from the 5th percentile to 
the 95th percentile—the placement of fiducial points remained well- 
preserved. We further investigated how the model’s predictions varied 
with waveform morphology, measured using the AIx as defined by 
Murgo et al. [46]. As shown in Fig. 5, the model accurately identified 
fiducial points across the full spectrum of waveform morpholo
gies—Type A, B, and C—correctly distinguishing early and late systolic 
peaks and appropriately placing the dicrotic notch, whether represented 
by a distinct notch or an incisura. These results demonstrate the model's 
strong generalizability to waveforms with diverse morphologies, which 
are commonly encountered in clinical measurements.

Accurate fiducial point detection is crucial for consistent PWA. While 
our detection method introduces minimal error (MAE = 5 ms), the error 
is sufficiently small to ensure a strong one-to-one correlation between 
waveform parameters measured using predicted fiducial points and 
those measured with human-annotated points (AIx R2 = 0.980; SPTI R2 

= 0.975; ESP R2 = 0.998). This level of precision is particularly 
important, as PWA is widely getting popular in both research and clin
ical settings to extract valuable information from pressure waveforms 
and aid in diagnostic assessments [16,47–50]. Arterial stiffness is an 
established independent predictor of adverse cardiovascular events and 
PWA is a key method for assessing this parameter [51–54]. AIx is closely 
linked to arterial properties, particularly through variations in pulse 
wave velocity and wave arrival time. As arterial stiffness increases, the 
pulse wave travels faster, causing the reflected wave from peripheral 
sites to return earlier during systole [55]. This premature arrival am
plifies systolic pressure, thereby increasing left ventricular afterload 
[55]. In this study, we demonstrated the inverse relationship between 
AIx and PTT – the time of pressure wave propagation between two 
points along the arterial system [56]. Additionally, our findings 
demonstrate that a longer transit time reduces the reflected wave 
contribution to afterload, as measured by lower AIx values. Given that 
AIx is highly dependent on the precise and consistent identification of 
the waveform’s inflection point [57], our results further highlight the 
critical role of accurate fiducial point detection for ensuring reliable 
PWA measurements. Therefore, we envision that PulseAI could be 
directly integrated into PWA of cardiac pressure waveform to perform 
single-site monitoring of arterial stiffness via AIx.

This study and its models have some limitations. First, the models 
were trained only on waveforms from a brachial cuff system in sSBP 
hold. Since pressure waveform morphology varies throughout the 
arterial tree, these models may not perform optimally on waveforms 
from different measurement sites or modalities. Expanding the training 
dataset to include diverse waveform sources is essential for broader 
applicability. Another limitation is the trade-off between generaliz
ability and accuracy. While our ML model effectively handles diverse 
waveform morphologies, this flexibility may reduce precision in highly 

consistent waveform patterns. In such cases, empirical methods may 
outperform the model, as they can achieve near-perfect accuracy when 
waveform characteristics are stable and well-defined. However, in real- 
world clinical data, where waveform variability is common, our model's 
adaptability is key to ensuring reliable performance across different 
patient profiles and conditions. Lastly, we acknowledge the ongoing 
debate in the literature regarding the use of AIx to assess arterial stiff
ness. At the level of wave dynamics, AIx is governed by arterial wave 
reflections and vascular properties, however several physiological fac
tors strongly modulate this relationship. As such, some studies have 
reported weak or inconsistent associations between AIx and arterial 
stiffness [58–60]. While this study is motivated by the clinical relevance 
of AIx, we recognize that AIx might not always serve as a standalone 
assessment of arterial stiffness.

5. Conclusion

Our study developed and validated the PulseAI method for identi
fying ti and tn on a cardiac waveform to serve as a tool for monitoring 
arterial stiffness from single-site pressure measurements. PulseAI was 
trained to predict the location of fiducial points from resampled and 
standardized pressure waveforms measured using a brachial cuff in the 
sSBP hold. The optimized model demonstrated strong predictive accu
racy, achieving a MAE of 9.4 ms overall, with errors of 12.6 ms for ti and 
of 6.2 ms for tn, both of which fall within the acceptance error range of 
30 ms. Accurate fiducial point detection is the foundation for reliable 
PWA, which enabled precise measurements of AIx, SPTI, and ESP using 
the predicted fiducial points. AIx from the brachial waveform revealed 
an inverse relationship with PTT, a surrogate metric of PWV, consistent 
with established arterial stiffness metrics. These results highlighted that 
AIx measured at the brachial is sensitive to elevated arterial stiffness. In 
conclusion, this study demonstrated that machine learning-based fidu
cial point detection provides a reliable approach for accurate PWA and a 
practical tool for single-site assessment of arterial stiffness-related 
metrics.
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