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Arterial stiffness is a fundamental characteristic of circulatory physiology and a well-established predictor of
cardiovascular risk and mortality. However, routine clinical assessment remains limited by the need for dual-site
measurements. To address this challenge, we developed a machine learning algorithm — PulseAl - for automated
fiducial point detection on brachial cuff waveforms for single-site assessment of arterial stiffness. PulseAl was
trained and evaluated using a clinical dataset comprising 5,215 waveforms from 145 heterogeneous subjects.
Performance was assessed on fiducial point predictions accuracy (inflection point, t;, and dicrotic notch, t,) and
downstream pulse waveform analysis (PWA) metrics. Our multi-channel convolutional neural network (PulseAI)
reported a median [IQR] on mean absolute error for fiducial point detection of 5 [3, 10] ms. PulseAl demon-
strated high accuracy in predicting t; (r = 0.913, p < 0.0001) and t, (r = 0.939, p < 0.0001), with an average
prediction error of 12.6 ms and 6.2 ms for t; and t,, respectively. While the t, results are comparable to other
academic models reporting ~10 ms errors, our approach provides both fiducial point indices from a single
model. PWA features derived from PulseAl closely matched those derived from human-annotated labels,
including systolic pressure-time integral (r = 0.988, p < 0.0001), augmentation index (AIx) (r = 0.990, p <
0.0001), and end systolic pressure (r = 0.998, p < 0.0001). AIx tertiles showed statistically significant association
with height-adjusted pulse transit time (p < 0.05), used as a surrogate of arterial stiffness, demonstrating the
model’s sensitivity to stiffness-related changes. These findings demonstrate that PulseAl enables accurate fiducial
point detection and represents a clinically viable tool for automated, single-site monitoring of arterial stiffness.

On one hand, efforts have been made to estimate PWV from single-point
measurements using machine learning models, offering a potentially
simpler alternative. Jin et al. developed a Gaussian Process Regression
method to estimate PWV from selected waveform features [10]. Mitchell

1. Introduction

Despite significant advances in cardiovascular care, cardiovascular
disease (CVD) remains the leading cause of mortality in developed

countries [1]. While blood pressure (BP) is a well-established risk factor,
additional markers have been shown to play a critical role in the
development and progression of CVD [2-4]. Among these, arterial
stiffness has emerged as an independent predictor of cardiovascular risk
and mortality [5,6]. Large artery elasticity is a fundamental character-
istic of circulatory physiology, helping to buffer the pulsatile flow
generated by cardiac ejection during systole [7]. Pulse wave velocity
(PWV) is a widely recognized metric for assessing arterial stiffness,
calculated using the pulse transit time (PTT) and the propagation dis-
tance between two measurement sites [8]. While PWV is considered the
gold standard for arterial stiffness assessment, its reliance on dual-site
measurement introduces practical challenges in clinical settings [9].
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et al., using a deep learning approach, trained a convolutional neural
network (CNN) to predict carotid-to-femoral PWV from single, uncali-
brated waveforms acquired at the radial, brachial, or femoral sites [11].
Beyond these direct applications, machine learning is being widely
adopted in cardiology for tasks including cardiovascular risk stratifica-
tion, transfer functions, and medical image analysis, demonstrating its
broad utility [12-15]. On the other hand, surrogate parameters have
been investigated for this purpose. Augmentation index (AIx) has gained
attention as a measure of systemic arterial stiffness derived from a single
cardiac waveform measurement [16]. However, the clinical utility of
such parameters is dependent not only on their theoretical significance
but also on the reliability and precision of their measurement [16-18].
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The first key factor influencing this accuracy is the reliability of pulse
waveform acquisition. Increasing attention has been directed toward
noninvasive systems such as brachial cuff devices, due to their ease of
use and improved measurement repeatability—both essential for clin-
ical adoption [19,20]. In this context, suprasystolic blood pressure
(sSBP) measurements mode have gained prominence for its ability to
capture detailed and feature rich pressure waveforms [14,15,19,21-24].
Beyond waveform acquisition, the accurate identification of fiducial
points along the cardiac pressure waveform remains a critical challenge.
These points correspond to key physiological events, such as the arrival
of the reflected wave and the closure of the aortic valve, typically
marked by the inflection point and the dicrotic notch, respectively.
However, their morphology can vary significantly depending on the
population and study characteristics. For instance, the dicrotic notch
may appear as a distinct physical notch or a subtle incisura, while the
inflection point can occur either before or after the systolic peak. This
variability complicates the development of universally applicable
mathematical rules for their detection, often leading researchers to rely
on manual identification or study-specific criteria. For example, Suga-
wara et al. used the fourth order derivative to find the systolic inflection
point [25,26], Munir et al. used the first order derivatives and tangents
to determine the location of the inflection point [27], and Ueda et al.
used an experienced observed to measure the inflection point [28]. To
this end, several efforts have been dedicated towards developing algo-
rithmic approaches for automatic identification. Saffarpour et al.
developed Physiowise, a physics-aware approach to dicrotic notch
identification [29], Pal et al. pioneered an iterative envelope mean
method for detection of the dicrotic notch [30,31], and Hoeksel et al.
uses a three-element windkessel model to estimate flow from pressure
and then identify the dicrotic notch [32]. While these methods showed
promising results, they only focused on a single identification task and
therefore require complementation with other methods for full detec-
tion. With the substantial increment of healthcare dataset size, there is a
growing need for comprehensive, high-precision, and automated tools
to facilitate and standardize this process.

In this study, we assess the accuracy and generalizability of machine
learning for fiducial point detection, specifically identifying the inflec-
tion point and the dicrotic notch, using our model, PulseAl. We train and
evaluate the model on a dataset of manually labeled and human-
annotated cardiac pressure waveforms acquired from a brachial cuff
system operating in sSBP mode [33]. To benchmark its performance, we
compare PulseAI’s results against conventional mathematical methods
described in the literature and use the 30 ms reported error ranges as an
acceptance criteria [29,30]. To demonstrate the physiological relevance
of our machine learning pipeline, we have also examined the association
between arterial stiffness and Alx derived from our proposed algorithm.
Lastly, in order to provide a standardized and accessible platform for
researchers to integrate into their own studies, the optimized trained
model of this study has been made publicly available on GitHub.

2. Methods
2.1. Clinical study design

Brachial pressure waveforms were recorded using a custom and
laboratory-developed investigational brachial cuff device designed for
high-resolution waveform acquisition [33]. The device has been previ-
ously validated against intra-arterial measurements for waveform ac-
curacy [21]. The device’s protocol first performed an oscillometric
blood pressure measurement for calibration, followed by pulse wave-
form capture using the inflate-and-hold methodology. This methodology
was applied at the sSBP hold, defined as 35 mmHg above the systolic
blood pressure (SBP), and maintained for 40 s.

The dataset analyzed in this study consists of brachial pressure
waveforms collected during cardiac catheterization procedures. Mea-
surements were performed with subjects in the supine position, and the
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brachial cuff was placed on the left arm following standard cuff place-
ment guidelines. The study enrolled individuals aged 21 years or older
who were referred for non-emergent left heart catheterization between
September 2021 and September 2022. Exclusion criteria included recent
severe cardiac events (within one week), inability to undergo routine
blood pressure measurement, and contraindications to catheterization.
Simultaneous aortic catheterization waveforms were recorded during
brachial cuff measurements to enable PTT calculations. The signals were
captured at a sampling rate of 1 kHz.

The study was approved by the Institutional Review Board of
Western and Salus. Written informed consent was obtained from all
participants before the procedure. The study adhered to the principles of
the Declaration of Helsinki.

2.2. Study population

The study population included 145 subjects with a mean age of 66 +
9 years, 88 males (61%), and a mean body mass index (BMI) of 29.0 +
5.5 kg/m?. Patient characteristics for the entire study population are
summarized in Table 1. The analysis generated a dataset of 5215
waveforms from the brachial cuff during the sSBP hold phase. The dis-
tribution of cardiac cycles per individual showed a median of 37, with
interquartile ranges of [31,34] cycles per subject, a maximum of 62, and
a minimum of 2 (Fig. S2). The study population was partitioned into
three cohorts at the subject level using a 70%-10%-20% train-validation-
test split, resulting in cohorts of 102, 14, and 29 subjects, and 3646, 515,
and 1054 waveforms, respectively (Fig. 1B). Table S2 provides a sum-
mary of the population characteristics for the training, validation, and
test cohorts. Fig. S3 shows the cumulative distribution function of the
fiducial points in the time-based format as well as the unit-normalized
configuration; the train-validation-test cohorts showed overlapping
distributions for both t; and ,.

2.3. Data and signal preprocessing

The brachial cuff recordings were manually inspected to remove
instances of apparatus malfunction, procedural errors, saturated sensor
output, and arrhythmias. The sSBP pressure signal recordings from the
brachial cuff were segmented into individual cardiac cycles using the
foot-to-foot partition method [8]. Each cardiac cycle can be represented
mathematically as,

pm:p(tm)¢m:0¢17“'7N71~ (1)

where N is the length of the cardiac cycle. This segmentation resulted in
a dataset containing multiple cardiac cycles for each subject, with each
cycle treated as a unique but dependent data point. While cycles from
the same subject were considered distinct, they were not independent
due to the shared underlying physiological characteristics. Fiducial
points of interest on the pressure waveform — namely the peak pressure,
inflection point and dicrotic notch — were manually identified for the
entire dataset:

Table 1
Study population characteristics.

Variable Quantity (n = 145)
Age, years 66 + 9

Height, cm 170 £ 10

Weight, kg 84.6 +19.2

BMI, kg/m? 29.0 £ 5.5

Male, n (%) 88 (61%)

White, n (%) 96 (66%)

Smoker, n (%) 22 (15%)

Diabetes, n (%) 51 (35%)

Hypertension, n (%)
Hyperlipidemia, n (%)

115 (79%)
107 (74%)
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Fig. 1. Overview of the PulseAl method for fiducial point detection. (A) Conceptual overview of the PulseAl algorithm, including procedural steps and data flow.
(B) Schematic representation of the study design and data utilization workflow. (C) Brachial pressure waveform with labeled fiducial points: peak time (tp), inflection

point time (t;), and dicrotic notch time (t,). Shaded regions indicate the systolic and diastolic phases of the cardiac cycle.

t, = time of peak pressure
t; = time of inflection point

t, = time of dicrotic notch

These fiducial points represent key pressure waveform features: peak
time corresponds to maximal systolic pressure, the inflection time marks
the arrival of the reflected wave, and the dicrotic notch time indicates
the closure of the aortic valve. The cardiac cycles along with the fiducial
points were combined to generate the dataset for the study.

Both dataset components — fiducial points and brachial cuff wave-
forms — were preprocessed before being fed into the machine learning
portion of the study. The fiducial points were converted to unit-

normalized quantities by dividing for the duration of the cardiac
cycle, denoted T, as shown below:
[t TR @

This normalization ensures that the fiducial points all lie within the
range 0 to 1, which is optimal for an ML model output.

Brachial cuff waveforms were individually resampled to a fixed
length of 1000 samples to ensure consistent input size to the ML model.
Resampling was performed using a Fourier-based methodology along
the time axis, which is outlined in Algorithm 1. Resampled waveforms
were standardized to a mean value of zero and a standard deviation of
one. Upon performing both procedures, we define these as resampled
and normalized waveforms. The first and second derivatives were
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computed using the finite difference method on the resampled and
normalized waveforms; interior points were computed with second-
order accurate central differences while at the boundaries we used
one-sided differences to preserve signal length. This signal preprocess-
ing generated a dataset of waveforms — signal, first derivative and sec-
ond derivative — with fixed length, centered around zero, and a standard
deviation of one.

Algorithm 1: Fourier-based Resampling Method

Input: waveform signal p(t), desired signal length M
Output: resampled signal p'(t)
1. Discrete Fourier Transform

Convert signal from time domain to frequency domain:
j2rkm

Pe=3" pne N k=01, N-1
where Py are the frequency components of the original signal, and N is the length of
the original signal
2. Frequency Domain Resampling
If M > N, apply zero-padding to the frequency components:
{ Pi,k=0,--,N/2
P, = O,N/2<k<M-N/2
Pok=M—N/2, - M—1
If M < N, truncate the frequency components:
P, =Pk =0,1,~,M-1.
3. Inverse Discrete Fourier Transform
Convert the signal back to the time domain:

, 1M1, _itki
p; :Mzkzopke M,j =01, M-1.

The dataset was partitioned for standard model training and testing
using a 70%-10%-20% train-validation-test split ratio. Given the
dependence of cardiac cycles within a given subject, the split was per-
formed at the subject level rather than the cardiac cycle level to prevent
data leakage. The training cohort was used for model training, the
validation cohort for early stopping during training, and the testing
cohort for model evaluation.

2.4. PulseAl method

The PulseAl method is a machine learning approach developed to
identify fiducial points on the cardiovascular pressure waveform. The
model takes as input a single cardiac cycle and outputs the unit-
normalized indices of the fiducial points. In this model implementa-
tion, the PulseAl method was trained to predict the relative time position
of the inflection point and the dicrotic notch for the brachial pressure
waveforms in the sSBP hold. Fig. 1a shows an overview of the multi-
channel CNN (mcCNN) model implemented for PulseAl. The PulseAl
method was optimized for predicting the fiducial points t; and t, through
a two-stage process: model architecture evaluation and hyperparameter
tuning. Fig. S1 in the supplementary material provides an overview of
the optimization approach used in this study.

In the first stage, we evaluated four model architectures: a CNN, a
mcCNN, a multilayer perceptron (MLP), and a Fourier-based Neural
Network (fNN). At this stage, all models used an element-wise mean-
square error loss function.

The CNN model consisted of three convolutional blocks, each
sequentially comprising a 1D convolutional layer, ReLU activation, and
max pooling. The convolutional layers had 8, 16, and 16 filters,
respectively, with a kernel size of 3, a stride of 1, and padding of 1. One-
dimensional max-pooling with a kernel size of 2 and a stride of 2 was
applied after each block to progressively downsample the feature maps.
The output of the final convolutional block was flattened and passed
through two fully connected layers: the first with 128 units and the
second mapping to the two output classes. The model processed a single-
channel input, representing the resampled and normalized waveform of
length 1000. The mcCNN model had the same architecture as the CNN
model but processed three input channels: the resampled and normal-
ized waveform, its first derivative, and its second derivative, each of
length 1000. The use of derivatives was intended to capture high-
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frequency features embedded within the signal shape.

The MLP model consisted of four fully connected layers, mapping an
input of 1000 units to two output units. The three hidden layers con-
tained 128, 64, and 32 units, respectively, each followed by a ReLU
activation function and a dropout rate of 0.35. The fNN model was a
fully connected feedforward neural network operating in the frequency
domain. The input signal was first transformed into the frequency
domain, truncated to retain a limited number of modes, then flattened
into its real and imaginary components before being passed into the
network. The network architecture beyond this preprocessing step was
identical to the MLP model. The model architecture that yielded the best
performance was selected for hyperparameter optimization.

The hyperparameter tuning phase focused on three key factors: loss
function selection, data augmentation, and regularization. First, we
compared model performance with different base loss functions: mean
squared error (MSE), mean absolute error (MAE), and Huber loss with &
= 10 ms. A penalty term is added to each base loss function making the
total loss:

@(/tatal = Jba.se + Jpenalty (3)

The penalty term computes the average of all positive index differ-
ences between the inflection point and dicrotic notch. This penalty
effectively enforces the physiological constraint that the inflection point
occurs before the dicrotic notch.

jbenalzy = %Zilmax((l ?i.o - ?i.l) 4
where i€{1, ---,n} indexes the samples within the dataset.

Next, we investigated the impact of data augmentation, generating
additional training signals by applying truncation and resampling, and
scaling. Three augmentation strategies were evaluated: (1) truncation
and resampling, (2) scaling, and (3) both applied sequentially. Finally,
we explored regularization techniques, testing dropout, weight decay,
and their combined effect. At each step, the best-performing model
configuration was carried forward for further evaluation. This tuning
process resulted in nine experimental scenarios, detailed in Table S1 in
the supplementary material. Fig. S1 summarizes model selection and
hyperparameter tuning.

2.5. Empirical method

The empirical method served as a reference for comparing model
performance in identifying fiducial points along the pressure waveform.
This approach was used to detect both the inflection point, t;, as well as
the dicrotic notch, t,. The inflection point was determined using the
fourth-order derivative, following the guidelines established by Taka-
zawa et al. [35]. The dicrotic notch was identified as the first peak of the
second derivative occurring after the minimum of the first derivative, as
described by Peter et al. [36] and Takazawa et al. [37]. The mathe-
matical steps behind the empirical method have been summarized in
Algorithm 2.

Algorithm 2: Empirical Method for Calculating Fiducial Points

Input: waveform signal
Output: t,, t;, t, (fiducial point indices)
1. Compute Derivatives:
1.1. p(t)4, < Vp(t) (first derivative)
1.2. p(t)4, < Vp(t)4, (second derivative)
1.3. p(t)43<Vp(t)4, (third derivative)
1.4. p(t) 44 < Vp(t)43 (fourth derivative)
2. Identify Maximum Value:
2.1. ty<—argmax(p(t) )
3. Determine Slope at Maximum:
3.1. slopeas <P (tmax)ga
4. Identify Inflection Point:
If slopeqs > 0O (late systolic peak):
4.1. Identify zero-crossings of p(t) 4, (positive to negative)

(continued on next page)
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(continued)

Algorithm 2: Empirical Method for Calculating Fiducial Points

If at least two zero-crossings exist before t,:
t;« second zero-crossing of p(t),,
Else:
t;«<None
Else (early systolic peak):
4.2. Identify zero-crossings of p(t);, (negative to positive)
If at least three zero-crossings exist after t,:
tj« third zero-crossing of p(t)g,
Else:
ti«<None
5. Identify Dicrotic Notch:
5.1. tg1 min<—argmin(p(t)g; )

5.2. tneargmax(p(tdl_m,-,. : )dz) + ta1,min
6. Return: (t,, t;, t,)

2.6. Hemodynamic analyses

Pressure waveforms captured with a brachial cuff system are in non-
physiological units, as they represent the pressure fluctuations inside the
cuff. To convert these waveforms into physiological units, we applied a
previously validated calibration procedure using the blood pressure
values from the oscillometric measurement [21]. The waveforms were
scaled such that the peak pressure corresponds to SBP, and the base
pressure corresponds to diastolic blood pressure (DBP). The calibration
equation used is:

~__p(t) —min(p(¢))
Peaiip = max(p(t) ) — min(p(t) )

*(SBP — DBP) -+ DBP )

where p.qip represents the calibrated pressure waveform.

Pulse wave analysis (PWA) was performed on the calibrated wave-
form to extract clinically significant parameters, including Alx, systolic
pressure time integral (SPTI), and end-systolic pressure (ESP). These
parameters were computed using both the measured (human-annotated)
and PulseAl-generated fiducial points. Additionally, PTT—the foot-to-
foot time difference between the start of the waveform at the central
site (captured via catheter) and cuff waveforms—was calculated in
milliseconds. PTT was further adjusted for subject height to derive a
surrogate measure of PWV, herein denoted as sSPWV, both of which serve
as indicators of arterial stiffness [8].

M ifti <t

p(t) —p(to)’ '
Alx = ©)

M otherwise

p(t) —p(to)
SPTI = / p(t)dt 7
ESP = p(t,) ®
PTIT = tfoo[.cath - t:foot.cuff (9)

__ Height

SPWV = PTT a0

2.7. Statistical analyses

Fiducial point prediction accuracy was evaluated in the time domain.
To recover the predicted fiducial point values, the unit-normalized
predictions were multiplied by the cardiac cycle duration and rounded
to the nearest millisecond (ms). Model performance was assessed by
calculating the prediction error (true — predicted) for individual fiducial
points, as well as the MAE for joint predictions. Several metrics were

Biomedical Signal Processing and Control 119 (2026) 109840

used to evaluate model accuracy, including the Pearson correlation co-
efficient (r), coefficient of determination (Rz), root mean squared error
(RMSE), mean difference, and limits of agreement. The prediction ac-
curacy for fiducial points and PWA-derived parameters was visualized
using scatter plots of true-versus-predicted values and Bland-Altman
analysis. Correlation strength was quantified using r and the intraclass
correlation coefficient (ICC), along with 95% confidence intervals (95%
CI). Bland-Altman analysis was also used to assess bias and limits of
agreement. Significance level was set at a value of p < 0.05.

3. Results
3.1. Model development

The PulseAl model was trained on the training cohort (3,646 cardiac
cycles) with an early stopping criterion based on the validation cohort
(515 cardiac cycles) and evaluated on the testing cohort (1,054 cardiac
cycles). Model architecture optimization, summarized in Fig. 2 and
Table S3, was performed across four different model configurations and
the empirical method. The mcCNN model demonstrated the highest
fiducial point prediction accuracy, with a median [IQR] error (true —
predicted) of 0 [-7, 7.75] ms for t; and 1 [-3, 4] ms for t,,. The fNN model
had the second-best performance, with a median [IQR] error of —3 [-17,
13] ms for t; and —1 [-7, 6] ms for t,. The combined MAE for fiducial
point prediction was lowest for the mcCNN model (median [IQR] =6 [3,
12.5] ms) and highest for the empirical method (median [IQR] =73 [56,
96.5] ms). Both the mcCNN and fNN models significantly outperformed
the other models in predicting ¢; and t, as measured with r and R?, as
shown in Table S2. The algorithms were tested with cross-validation on
incremental relative training sizes, the fNN and mcCNN significantly
outperformed the other models across all training sizes (Fig. S4). Based
on these results, the mcCNN architecture was selected for further tuning.

Hyperparameter tuning was performed sequentially to explore po-
tential improvements in model performance. Three sets of experiments
were conducted to evaluate the loss function (experiments #1-3), data
augmentation strategies (experiments #4-6), and regularization
methods (experiments #7-9). The first set of experiments (#1-3) indi-
cated that the MAE base loss function produced the most accurate pre-
dictions for t; (r = 0.88, R* = 0.77, RMSE = 25 ms) and t, (r = 0.91, R*> =
0.82, RMSE = 17 ms), leading to its selection for subsequent experi-
ments. The second set (#4-6) tested different data augmentation tech-
niques. The truncate and resample method (experiment #4) yielded the
best improvement for ¢; prediction (r = 0.92, R?= 0.85, RMSE = 21 ms),
while the combination of truncation and resampling, and scaling
(experiment #6) provided the highest accuracy for t, (r = 0.94, R? =
0.88, RMSE = 14 ms). Since the performance difference between ex-
periments #4 and #6 for t; was minimal, the configuration from
experiment #6 was chosen for further testing. Finally, experiments #7-9
assessed different regularization techniques, but none resulted in
improved prediction accuracy. A summary of the hyperparameter tun-
ing results is provided in Table 2 and Fig. S5 in the supplementary
material. Based on these findings, the final model configuration was
selected from experiment #6. This corresponds to the mcCNN archi-
tecture with an MAE base loss function and data augmentation using
both the truncate and resample method along with scaling. Specifically,
the mcCNN model takes three channels as inputs — waveform, first and
second derivative — and has three convolutional blocks followed by fully
connected layers. The convolutional blocks are each made up of a 1D
convolutional layer, a ReLU activation and a max pooling step; con-
volutional layers have 8, 16, and 16 dimensions, a kernel size of 3, and a
stride and padding of 1. The fully connected layers convert feature maps
to the fiducial point indices; the first layer is a dense layer with 128 units
and ReLU activation and the output layer has 2 units.
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Fig. 2. Fiducial point prediction errors across different model architectures. (A) and (B) show the prediction error (true — predicted) for the inflection point, t;,
and the dicrotic notch, t,, respectively. (C) Displays the mean absolute error (MAE) for fiducial point detection across various algorithms, including the convolutional
neural network (CNN), multi-channel CNN (mcCNN), multi-layer perceptron (MLP), Fourier-based neural network (fNN), and the empirical model.

Table 2

Prediction accuracy metrics for the cardiac wave fiducial point predictions for the hyperparameter and algorithm tuning experiments.

Experiment Number

Metric 1 2 3 4 5 6 7 8 9
t; r 0.85 0.88 0.86 0.92 0.86 0.91 0.89 0.91 0.89
R? 0.71 0.77 0.74 0.85 0.74 0.83 0.79 0.82 0.79
RMSE, ms 29 25 27 21 27 22 24 22 24
Mean Difference, ms -7 -2 2 0 2 0 0 -1 -2
Limits of Agreement, ms 54 49 53 41 52 42 47 44 47
ty r 0.89 0.91 0.90 0.89 0.91 0.94 0.92 0.92 0.89
R? 0.77 0.82 0.78 0.78 0.81 0.88 0.85 0.83 0.76
RMSE, ms 19 17 18 18 17 14 15 16 19
Mean Difference, ms 4 3 6 1 2 0 1 0 3
Limits of Agreement, ms 37 32 34 36 33 27 30 32 37
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Fig. 3. Performance of the optimized PulseAl model error in the test population. (A) Mean absolute error (MAE) distribution across the test population (n =
1,054). (B) Five sample waveforms illustrating fiducial point predictions across the error spectrum at the 5th, 25th, 50th, 75th and 95th percentile of MAE.
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3.2. Model evaluation

The PulseAl model, incorporating the mcCNN architecture, MAE loss
function, and selected data augmentation strategies, was evaluated on
the test cohort (1,054 cardiac cycles). Fig. 3A presents the model’s MAE
distribution, with a median [IQR] error of 5 [3,10] ms. Fig. 3B visualizes
the positioning of true versus predicted fiducial points (t; and t,) across
the entire error spectrum. The model reported an average MAE of 9.4 ms
with a 95% confidence interval of [8.6, 10.1] and an average RMSE of
18.1 ms with a confidence interval of [17.3, 19.0]. Fig. 4 illustrates the
prediction accuracy for fiducial points using true-versus-predicted plots
and Bland-Altman analysis. The t; point demonstrated a strong linear
correlation (r = 0.913, p < 0.0001; ICC = 0.951) with no bias (B [LOA]
= 0 [-42, 43] ms). Similarly, the t, point exhibited a strong linear cor-
relation (r = 0.939, p < 0.0001; ICC = 0.958), with no observed bias (B
[LOA] = 0 [-27, 27] ms). The average error in fiducial point identifi-
cation was below the permitted error range of 30 ms for both t; (12.6 ms)
and t, (6.2 ms). A stratified analysis of the PulseAI model performance
with the mcCNN architecture was performed for age, gender, and hy-
pertensive status, results summarized in Table S4. Fig. 5 qualitatively
demonstrates that prediction accuracy is consistent across the three
pressure waveform types—Type A, Type B, and Type C—classified based
on Alx.
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3.3. Physiological relevancy of the approach

The true and predicted fiducial points were used to extract clinically
relevant features from the cardiac pressure waveform via PWA. Fig. 6
compares PWA accuracy using PulseAl-predicted fiducial points versus
true measurements (human-annotated) for AIx, SPTI, and ESP. Alx
exhibited a strong correlation between predicted and true values (r =
0.990, p < 0.0001; ICC = 0.995) with no detectable bias (B [LOA] =0 [-
9, 8] %). Similarly, SPTI demonstrated high agreement (r = 0.988, p <
0.0001; ICC = 0.994) with negligible bias (B [LOA] = 0.0 [-2.1, 2.1] %).
ESP also showed excellent concordance (r = 0.998, p < 0.001; ICC =
0.999) and minimal bias (B [LOA] = -0.2 [-1.4, 1.1] mmHg).

Alx values, computed using both true and predicted fiducial points,
were further analyzed in relation to arterial stiffness metrics, specifically
PTT (in milliseconds) and sPWV (in meters per second) (Fig. 7). Three
instances with non-physiological negative PTT values were excluded. A
tertile analysis of PTT classified the population into three subgroups: T1
(n = 362) with (8, 56] ms, T2 (n = 368) with (56, 66] ms, and T3 (n =
321) with (66, 85] ms. Alx demonstrated a clear inverse relationship
with PTT, with significant differences observed between all tertiles (T1
vs. T2, T2 vs. T3, and T1 vs. T3; all p < 0.05). Additionally, no significant
differences were found between true and predicted Alx values within
each tertile group (all p > 0.05).

A similar tertile analysis was conducted for sPWV, dividing the
population into T1 (n = 351) with (19, 25.5] m/s, T2 (n = 362) with
(25.5, 30] m/s, and T3 (n = 338) with (30, 210] m/s. Alx exhibited a
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Fig. 4. Prediction accuracy of PulseAl for pulse waveform fiducial points. (Top) True-versus-predicted plots for fiducial points t; and t,, with the black solid line
representing the line of proportionality. (Bottom) Bland-Altman plots for t; and t, where the solid blue line indicates the mean difference, and the shaded area

represents the limits of agreement.
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Fig. 5. PulseAl fiducial point predictions versus true measurement across different wave morphologies. True and predicted fiducial points are shown for
waveforms classified based on the shape type according to Augmentation Index (AIx) morphology definitions.
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Fig. 7. Relationship between arterial stiffness and PulseAl-derived Augmentation Index (AIx). Alx measurements are compared with pulse transit time (PTT)

and surrogate of pulse wave velocity (SPWV) as indirect measures of arterial stiffness. Statistical significance is marked as * p < 0.05, ** p < 0.01, *** p < 0.001, *

p < 0.0001.

positive correlation with sPWV, with significant differences found be-
tween T1 and T2 as well as between T1 and T3 (both p < 0.05), though
no statistical difference was observed between T2 and T3 (p > 0.05).
Also, for sSPWV no significant differences were detected between true
and predicted Alx values across all tertile groups (all p > 0.05).

4. Discussion

Consistent and reliable identification of fiducial points in a cardiac
waveform is essential for accurate PWA, making this precursor step
crucial in clinical assessments [38]. While certain fiducial points, such as
the peak systolic pressure, are easily identifiable due to their distinct
characteristics, others — like the dicrotic notch and the inflection point —
are more challenging to define. This challenge is further amplified in
noninvasive signals, where high-frequency components tend to be
attenuated, making these features less distinct. In the literature, there
are several mathematical definitions used for the identification of these
points [36,39]. For example, Takazawa et al. used a conditional defi-
nition based on the fourth-order pressure derivative to determine
whether the inflection point occurs before or after the systolic peak,
followed by zero crossings to determine its precise location [35]. Other
studies have used second order derivative crossings [37], while others
have identified this point based on the intersection of tangents drawn at
local minima and maxima in the waveform’s first derivative [27].
Similar trends can be observed for the identification of the dicrotic
notch. While the notch is easily defined when distinctly visible, its
definition can become ambiguous in cases where it is represented by an
incisura, making its identification reliant on higher-order derivative
behaviors [34,40-43]. Moreover, the diversity in waveform morphol-
ogies may necessitate different identification strategies to ensure accu-
rate detection across various patient populations and physiological
conditions. Although these features are often easily identifiable by visual
inspection from a trained individual, translating their characteristics
into precise mathematical definitions is a complex task. This inherent
complexity makes fiducial point detection particularly well-suited for
machine learning-based pattern recognition approaches, which can
effectively capture subtle waveform variations and improve detection
robustness.

In this study, we evaluated multiple model architectures and pre-
processing strategies to identify the optimal approach for fiducial point

detection. Among the four tested architectures, the mcCNN demon-
strated the lowest prediction error. This model processes the pressure
signal along with its first and second derivatives to identify fiducial
points, significantly outperforming the single-channel CNN model in
terms of MAE (p < 0.05). This improvement suggests that incorporating
the pressure signal’s derivatives provided additional valuable informa-
tion for the pattern recognition task. Interestingly, this result aligns with
empirical strategies commonly described in the literature, where higher-
order derivatives are employed to identify these fiducial points as signal
characteristics are more apparent [35,37]. Given that the CNN archi-
tecture relies on filters to extract signal patterns, this additional infor-
mation from the waveform derivatives appears to enhance model
performance effectively.

As part of the model comparison, we also assessed the performance
of an empirical method based on conventional definitions of fiducial
points found in the literature [34,35]. As shown in Fig. 2 and Table S3 in
the supplementary material, the machine learning models strongly
outperformed the empirical method. The prediction of the inflection
point, t;, exhibited a wide error distribution, with interquartile ranges
between —74 to 137 ms. This suggests that the empirical method
frequently misidentified early systolic peaks as late systolic peaks, or
vice versa, highlighting the difficulty in defining mathematical rules to
classify such points. Another notable observation from this analysis is
that the fNN method achieved only slightly lower performance than the
mcCNN (mcCNN MAE = 6 ms; fNN MAE = 12.5 ms), while maintaining
a substantially smaller model size (mcCNN = 257 k parameters; fNN =
15.5 K parameters). Although the mcCNN model was chosen for
downstream analysis due to superior performance, these results high-
light the effectiveness of spectral machine learning in developing
compact yet accurate models [15,44,45].

Our findings further demonstrated that preprocessing strategies
applied to the mcCNN model improved performance. The most notable
improvement resulted from the data augmentation strategy, which
involved modifying the input data such that a single data point was used
multiple times in the training set with different configurations. The base
dataset preprocessing included normalizing all input waveforms to a
uniform length of 1000 units and standardizing the amplitude to have
zero mean and unit standard deviation. Two data augmentation strate-
gies were then applied: (1) rescaling the waveform amplitudes and (2)
truncating and resampling the waveforms. Since the inflection point and
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dicrotic notch follow physiological phenomena, they tend to occur in
relatively consistent locations. Truncating and resampling shifted the
location of these fiducial points within the waveform while preserving
its key features. This strategy aimed to prevent the model from learning
a fixed positional bias and instead focus on recognizing signal-based
characteristics. Similarly, rescaling the waveform amplitude was
designed to prevent the model from relying on amplitude patterns and
instead promote recognition of relevant waveform features. Conceptu-
ally, these data augmentation strategies were intended to expand the
effective size of the training dataset by allowing a single real data point
to contribute multiple useful and non-redundant samples. This is
particularly important in clinical data applications, where data collec-
tion is often challenging and time-consuming. By engineering effective
augmentation techniques, we can maximize the utility of available data
and improve model robustness in real-world scenarios.

The variability in waveform morphology is highly prevalent in
noninvasive datasets, making it crucial for the model to generalize
across the entire spectrum. To assess this, we first examined how pre-
diction errors translated to the physical placement of fiducial points. As
shown in Fig. 3B, across the MAE spectrum—from the 5th percentile to
the 95th percentile—the placement of fiducial points remained well-
preserved. We further investigated how the model’s predictions varied
with waveform morphology, measured using the Alx as defined by
Murgo et al. [46]. As shown in Fig. 5, the model accurately identified
fiducial points across the full spectrum of waveform morpholo-
gies—Type A, B, and C—correctly distinguishing early and late systolic
peaks and appropriately placing the dicrotic notch, whether represented
by a distinct notch or an incisura. These results demonstrate the model's
strong generalizability to waveforms with diverse morphologies, which
are commonly encountered in clinical measurements.

Accurate fiducial point detection is crucial for consistent PWA. While
our detection method introduces minimal error (MAE = 5 ms), the error
is sufficiently small to ensure a strong one-to-one correlation between
waveform parameters measured using predicted fiducial points and
those measured with human-annotated points (Alx RZ = 0.980; SPTI R?
= 0.975; ESP R? = 0.998). This level of precision is particularly
important, as PWA is widely getting popular in both research and clin-
ical settings to extract valuable information from pressure waveforms
and aid in diagnostic assessments [16,47-50]. Arterial stiffness is an
established independent predictor of adverse cardiovascular events and
PWA is a key method for assessing this parameter [51-54]. Alx is closely
linked to arterial properties, particularly through variations in pulse
wave velocity and wave arrival time. As arterial stiffness increases, the
pulse wave travels faster, causing the reflected wave from peripheral
sites to return earlier during systole [55]. This premature arrival am-
plifies systolic pressure, thereby increasing left ventricular afterload
[55]. In this study, we demonstrated the inverse relationship between
Alx and PTT - the time of pressure wave propagation between two
points along the arterial system [56]. Additionally, our findings
demonstrate that a longer transit time reduces the reflected wave
contribution to afterload, as measured by lower Alx values. Given that
Alx is highly dependent on the precise and consistent identification of
the waveform’s inflection point [57], our results further highlight the
critical role of accurate fiducial point detection for ensuring reliable
PWA measurements. Therefore, we envision that PulseAl could be
directly integrated into PWA of cardiac pressure waveform to perform
single-site monitoring of arterial stiffness via Alx.

This study and its models have some limitations. First, the models
were trained only on waveforms from a brachial cuff system in sSBP
hold. Since pressure waveform morphology varies throughout the
arterial tree, these models may not perform optimally on waveforms
from different measurement sites or modalities. Expanding the training
dataset to include diverse waveform sources is essential for broader
applicability. Another limitation is the trade-off between generaliz-
ability and accuracy. While our ML model effectively handles diverse
waveform morphologies, this flexibility may reduce precision in highly
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consistent waveform patterns. In such cases, empirical methods may
outperform the model, as they can achieve near-perfect accuracy when
waveform characteristics are stable and well-defined. However, in real-
world clinical data, where waveform variability is common, our model's
adaptability is key to ensuring reliable performance across different
patient profiles and conditions. Lastly, we acknowledge the ongoing
debate in the literature regarding the use of Alx to assess arterial stift-
ness. At the level of wave dynamics, Alx is governed by arterial wave
reflections and vascular properties, however several physiological fac-
tors strongly modulate this relationship. As such, some studies have
reported weak or inconsistent associations between AlIx and arterial
stiffness [58-60]. While this study is motivated by the clinical relevance
of Alx, we recognize that Alx might not always serve as a standalone
assessment of arterial stiffness.

5. Conclusion

Our study developed and validated the PulseAI method for identi-
fying t; and t, on a cardiac waveform to serve as a tool for monitoring
arterial stiffness from single-site pressure measurements. PulseAl was
trained to predict the location of fiducial points from resampled and
standardized pressure waveforms measured using a brachial cuff in the
sSBP hold. The optimized model demonstrated strong predictive accu-
racy, achieving a MAE of 9.4 ms overall, with errors of 12.6 ms for t; and
of 6.2 ms for t,, both of which fall within the acceptance error range of
30 ms. Accurate fiducial point detection is the foundation for reliable
PWA, which enabled precise measurements of Alx, SPTI, and ESP using
the predicted fiducial points. Alx from the brachial waveform revealed
an inverse relationship with PTT, a surrogate metric of PWV, consistent
with established arterial stiffness metrics. These results highlighted that
Alx measured at the brachial is sensitive to elevated arterial stiffness. In
conclusion, this study demonstrated that machine learning-based fidu-
cial point detection provides a reliable approach for accurate PWA and a
practical tool for single-site assessment of arterial stiffness-related
metrics.
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