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Analyzing cardiac pulse waveforms offers valuable insights into heart health and
cardiovascular disease risk, although obtaining the more informative measurements
from the central aorta remains challenging due to their invasive nature and limited
noninvasive options. To address this, we employed a laboratory-developed cuff device for
high-resolution pulse waveform acquisition and constructed a spectral machine learning
model to nonlinearly map the brachial wave components to the aortic site. Simultaneous
invasive aortic catheter and brachial cuff waveforms were acquired in 115 subjects to
evaluate the clinical performance of the developed wave-based approach. Magnitude,
shape, and pulse waveform analysis on the measured and reconstructed aortic waveforms
were correlated on a beat-to-beat basis. The proposed cuff-based method reconstructed
aortic waveform contours with high fidelity (mean normalized-RMS error = 11.3%).
Furthermore, continuous signal reconstruction captured dynamic aortic systolic blood
pressure (BP) oscillations (r = 0.76, P < 0.05). Method-derived central pressures showed
strong correlation with the independent invasive measurement for systolic BP (R* =
0.83; B [LOA] = -0.3 [-17.0, 16.4] mmHg) and diastolic BP (R* = 0.58; B [LOA] =
-0.7 [-13.1, 11.6] mmHg). Shape-based features are effectively captured by the spectral
machine learning method, showing strong correlations and no systemic bias for systolic
pressure—time integral (r = 0.91, P < 0.05), diastolic pressure—time integral (r = 0.95,
P < 0.05), and subendocardial viability ratio (r = 0.86, P < 0.05). These results suggest
that the nonlinear transformation of wave components from the distal to the central site
predicts the morphological waveform changes resulting from complex wave propagation
and reflection within the cardiovascular network. The proposed wave-based approach
holds promise for future applications of noninvasive devices in clinical cardiology.

central pressure waveform | transfer function | cuff-based device | machine learning |
aortic catheterization

Cardiovascular disease (CVD) remains the leading cause of death in the United States,
affecting millions of people each year (1). Early detection and accurate monitoring of
heart health are crucial for preventing serious complications such as heart attack, stroke,
and chronic heart failure, which have had an annual cost of around $400 billion on the
US economy (1). Evaluating blood pressure (BP) is essential for assessing cardiovascular
risk, as the heart works against the BP to efficiently eject blood into the arterial system
(2). In clinical practice, BP is typically measured noninvasively at the brachial artery using
a cuff-based device. The brachial systolic BP (SBP) and diastolic BP (DBP), representing
the peak and trough of the cardiac pressure wave, serve as surrogates for central pressure
due to their convenience and are widely used for initial CVD risk assessment (3). However,
increasing evidence indicates that factors beyond BP play a crucial role in the development
of cardiac disease and are independent risk factors (4, 5). These findings have supported
a strong paradigm shift toward analyzing the entire pressure waveform shape to quanti-
tatively assess these additional risk factors through pulse wave analysis (PWA) (6).

As the cardiac pressure wave travels from the central to peripheral arteries, its shape
and amplitude are altered by the interaction between forward-propagating and reflected
waves (Fig. 14) (7-9). Most notably, as the pressure wave propagates distally, SBP increases
while DBP and mean arterial pressure (MAP) remain relatively constant (10). These
transformations are influenced by subject-specific hemodynamic factors, such as arterial
stiffness and wave reflection intensity, resulting in significant variability in waveform
morphology and magnitude changes between central and peripheral arteries among indi-
viduals (8, 11, 12). Evidence increasingly shows that central BP is more strongly linked
to target organ damage and CVD risk than peripheral BP (12, 13). Antihypertensive drugs
affect central and peripheral BP differently by targeting distinct mechanisms such as total
peripheral resistance, cardiac output, arterial stiffness, and wave reflections. Since the
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Fig. 1. Overview of the study’'s motivation, methodology, and design. (A) Real waveform examples illustrating the morphological changes that occur as pressure
waves propagate through the arterial system. (B) Steps of the cuff-based F-ML approach for reconstructing central pressure waveforms. (C) Study design for the
simultaneous acquisition of invasive aortic catheter waveforms and brachial cuff waveforms. F-ML was applied to calibrated peripheral waveforms obtained
from the brachial cuff to reconstruct the corresponding aortic pressure waveform. Part of this figure was generated with adapted illustrations from Servier
Medical Art, provided by Servier and licensed under a Creative Commons Attribution 3.0 Unported License.

causes of elevated BP vary, evaluation of treatment efficacy should
extend beyond brachial BP measurements to include central pres-
sure waveform analysis (12, 14). Given that direct measurement
of the central waveform requires invasive procedures with associ-
ated risks, there arises a need for a peripheral-to-central transfor-
mation. To this end, there has been an emerging interest in
developing techniques to estimate the shape of the central pressure
waveform from a noninvasive peripheral measurement (15). The
conventional method of estimating central pressure was achieved
with the Generalized Transfer Function (GTF) (16, 17). However,
it was recognized that greater fidelity reproduction of the wave
contour would be necessary for accurate PWA (17). Despite

https://doi.org/10.1073/pnas.2416006122

numerous techniques proposed to enhance the fidelity of recon-
structed central waveforms, and devices like the Mobil-O-Graph
being clinically available and validated for specific parameters such
as central BP and pulse wave velocity, the literature still lacks a
robust method and comprehensive analysis of central pressure
waveform reconstruction and PWA validated against invasive
data (18-22).

To address this unmet need, we incorporated a spectral machine
learning algorithm into the brachial cuff system to noninvasively
reconstruct the shape of the central pressure waveform. This
approach is based on the Fourier decomposition of pressure wave-
forms and hence is referred to as Fourier-based machine learning
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(F-ML). F-ML transforms a peripheral pressure waveform to the
central site by applying nonlinear mapping to the fundamental
wave components (Fig. 1B) (23). This approach is suitable for
waveform reconstruction due to its ability to capture high-frequency
components in the pressure waveform (24, 25). Our recent work
demonstrated the operating principle of F-ML in mapping the
radial waveform to the carotid waveform, both acquired using
tonometry and calibrated with the same brachial BP (23). While
these prior findings provide a proof of concept for the F-ML
approach, its clinical applicability and potential as a reliable meas-
urement modality remain unknown. In the present study, the
authors aim to reconstruct the central pressure waveform with the
F-ML method from an automated brachial cuff system (26) and
compare it to an invasive catheter measurement at the ascending
aorta (Fig. 1C). The measurement modalities of this study—the
invasive catheter and the brachial cuff—are entirely independent,
enabling a true analysis of the clinical applicability of our approach.

Results

Clinical Characteristics. The study recruited 202 patients referred
for nonemergent left heart cardiac catheterization to be performed
from either a femoral or radial access site. Manual analysis of the
clinical data excluded 44 subjects for failed procedures, leaving
a total of 158 subjects in the study; exclusion reasons included
11 catheter malfunctions, 16 cuff malfunctions, 14 incorrect
measurement procedures, and three aborted measurements. Upon
analysis of the recordings, an additional 33 subjects were excluded
for signal degradation (125 subjects remaining), of which 7 were
for severe arrhythmia, 11 for sensor saturation, and 15 for poor
signal quality. The algorithmic analysis excluded 10 additional
subjects, either due to failure in identifying waveform cardinal
points or an insufficient number of consecutive waveforms. A
total of 115 subjects passed all manual evaluations and algorithmic
eligibility criteria to generate a dataset of 3,615 waveforms.

The cohort examined in this investigation (subjects = 115) com-
prised 63% males, with an average age of 66 y, and a mean Body
Mass Index of 28.6 kg/ m® (S/ Appendix, Table S1). Subjects had
an average left arm circumference of 31 + 4 cm, with a minimum
of 24 cm and a maximum of 42 cm; the used cuff size was appro-
priate for all subjects in the study. Within the study population,
80% reported hypertension (HTN), 74% reported hyperlipidemia,
and 32% reported diabetes mellitus. The study population exhib-
ited a notable prevalence of CVD: 21% reported heart valve dis-
ease, 20% reported heart failure, and 19% reported left ventricular
dysfunction. Indication for left heart catheterization referral in the
examined cohort are summarized in S/ Appendix, Table S2; the
predominant referral reasons included abnormal testing (60%),
angina (23%), and diagnostic purposes (15%).

A standard 70:30 train-test split was applied to the study pop-
ulation to generate two independent cohorts: the training cohort
for model training (subjects = 80, waveforms = 2,621) and the
testing cohort for evaluation (subjects = 35, waveforms = 994).
Training and testing cohort characteristics are found in SI Appendix,

Table S3.

Waveform Reconstruction. Fig. 24 shows 10-s segments of the
continuous waveform reconstruction from cuff-based F-ML
against the true signal measured from the catheter in two sample
cases from the testing population. S7 Appendix, Fig. S2 presents
20-s segments of invasive catheter signals from three test cases in
the population, illustrating the pressure fluctuations observed in
continuous recordings on a beat-to-beat basis. The SBP tracking
precision, shown in Fig. 2B, demonstrates a strong linear correlation

PNAS 2025 Vol.122 No.9 2416006122

(r=0.76, P<0.05) between the fluctuation amplitudes measured
during breathing cycles by the cuff-based F-ML method and the
invasive catheter for subjects in the test population (subjects = 35).
Fig. 2C shows the Bland—Altman analysis for the SBP fluctuations
reporting a bias (B) of 2.4 mmHg with limits of agreement (LOA)
of [-6.0, 10.8] mmHg. Waveform reconstruction repeatability
in the test population (subjects = 35) was assessed in Fig. 2D;
the F-ML method had a coefficient of variation (COV) of 0.26
(MEAN,,, = 6.9 mmHg; SD,, = 1.8 mmHg). S] Appendix, Fig. S3
compares brachial, GTF reconstructed, and F-ML reconstructed
continuous waveform signal against the pressure—time signal
of the invasive catheter. A comparable COV was reported for
GTF (COV = 0.25) but with higher averages for both the RMS
error (RMSE) mean (MEANavg = 8.8 mmHg) and SD (SDavg =
2.2 mmHg) (ST Appendix, Fig. S4). A statistically significant
difference was found between the mean of RMSE for the GTF
and F-ML methods (P < 0.05).

Pulse waveforms were further analyzed on a beat-to-beat basis
to estimate the reconstruction error for both absolute pressure
values and metrics for waveform shape on all waveforms for the
test population (subjects = 35, waveforms = 994). Fig. 34 shows
the error, calculated as true (invasive measurement) minus pre-
dicted, for the SBP, DBP, and MAP. The SBP error from the
reconstructed waveforms showed a statistically significant differ-
ence (P < 0.05) between GTF (B [LOA] = 1.7 [-17.6, 21.0]
mmHg) and F-ML (B [LOA] = -0.3 [-17.0, 16.4] mmHg). The
error in DBP values from the reconstructed waveforms also showed
a statistically significant difference (P < 0.05) between GTF (B
[LOA] = -5.2 [-17.9, 7.4] mmHg) and F-ML (B [LOA] = -0.7
[-13.1, 11.6] mmHg). Table 1 shows a significant improvement
in BP measurement for the F-ML method compared to GTE
Notably, the reduction in the bias for DBP contributes to the
enhanced correlation for DBP measurement with the F-ML
method (R? = 0.58, r = 0.76), compared to GTF (R* = 0.27,
r = 0.77). The lower R” for GTF likely reflects the consistent bias
in its DBP estimates, despite a similar linear relationship with the
catheter measurements.

Shape correspondence between the reconstructed waveform and
the true measurement showed statistically significant differences
(P < 0.05) between GTF and F-ML for the pressure signal, first
derivative, and second derivative (Fig. 3B). The normalized-RMS
error (nNRMSE) for the pressure signal reconstruction with F-ML
(B [LOA] = 11.3 [1.1, 21.6] %) was lower than that with GTF
(B [LOA] = 14.5 [1.2, 27.9] %). SI Appendix, Figs. S5-S7 quali-
tatively show the increased faithfulness of waveform reconstruc-
tion with the F-ML method. SI Appendix, Fig. S8 presents the
F-ML waveform reconstructions alongside their respective aortic
catheter waveforms, illustrating examples of waveforms with dis-
tinctly different morphologies, as quantified by the augmentation
index (Alx) (27). SI Appendix, Tables S4 and S5 summarize the
shuffle split testing results, showing that the F-ML model’s per-
formance is consistent and generalizable across different data splits
in the study population.

SBP and DBP from the invasive catheter, F-ML method,
and brachial cuff pressure measurement were used to generate
HTN classifications for the test population (subjects = 35); the
subject-averages for the individual waveform BP values were used
in the invasive catheter and F-ML method. Fig. 4 shows the HTN
classification results in the form of a confusion matrix for the bra-
chial cuff pressure measurement and F-ML method compared to
the gold standard from the invasive aortic catheter. The brachial
cuff pressure measurements yielded 12 true negatives, 12 true pos-
itives, 11 false positives, and 0 false negatives, with an accuracy of

69%, a sensitivity of 100%, and a specificity of 52% (Fig. 44).
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Fig. 2. Evaluation of continuous pulse waveform reconstructions from the F-ML method in the test population (n = 35 subjects). (A) Ten-second segments of
the invasive catheter signal (red) are compared to the reconstructed continuous F-ML signal (blue) for two test cases. (B) True-versus-predicted plot for the
subject-averaged peak-to-peak fluctuation amplitude of SBP in mmHg across breathing cycles (n = 35). The red line represents the linear regression line of
best fit, with shaded regions indicating the 95% Cl for the predictions. The dashed lines show the upper and lower bounds of the ClI. (C) Bland-Altman plot for
the subject-averaged peak-to-peak fluctuation amplitude of SBP in mmHg. The red solid line represents the bias, while the dashed red lines indicate the limits
of agreement. (D) Subject-level error is quantified as the SD versus the mean RMSE of the continuous pressure signal reconstruction for the F-ML model. The

black line represents the coefficient of variation.

The F-ML method showed 18 true negatives, 12 true positives,
and 5 false positives and 0 false negatives, with an accuracy of 86%,
a sensitivity of 100%, and a specificity of 78% (Fig. 4B).

Central Waveform Analysis. Beat-to-beat PWA was performed
to extract clinically significant waveform parameters from the true
and F-ML reconstructed signals on all cardiac cycles in the test
population (subjects = 35, waveforms = 994). Fig. 5 compares clinical
parameters derived using PWA from the F-ML reconstructed central
waveform (Predicted) with the values obtained from the invasive

https://doi.org/10.1073/pnas.2416006122

catheter (True). Area-based parameters are presented in Panel 5A
for the systolic pressure time integral (SPTI) (r = 0.91, P < 0.05; B
[LOA] = 0.2 [-5.6, 6.0] mmHgs), Panel 5B for the diastolic pressure
time integral (DPTI) (r=0.95, P<0.05; B [LOA] = -0.6 [-9.3, 8.0]
mmHg s), and Panel 5C for subendocardial viability ratio (SEVR)
(r = 0.86, P < 0.05; B [LOA] = -0.024 [-0.372, 0.323]). Shape-
based parameters are shown in Panel 5D for Form Factor (r = 0.73,
P < 0.05; B [LOA] = 0.007 [-0.034, 0.048]), Panel 5E for the Alx
(r=0.87, P<0.05; B [LOA] = 1.2 [-19.6, 22.0] %), and Panel 5F
for Peak Time (r = 0.80, P < 0.05; B [LOA] = 3.5 [-46.5, 53.5] ms).
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Pulse waveform parameters related to the timing and location of the
dicrotic notch are depicted in Panel 5G for Notch Time (r = 0.82,
P <0.05; B[LOA] =4.1[-39.3, 47.4] ms) and Panel 5H for Notch
Value (r = 0.92, P < 0.05; B [LOA] = -0.7 [-14.3, 12.9] mmHg).
The analysis for the equivalent parameters measured on the GTF
reconstructed waveforms is summarized in S Appendix, Figs. S9 and
S10. Further results from the cuff-based F-ML method are reported
in 81 Appendix, Fig. S11 for the slope parameters of maximal pressure
rise rate (dP/dt Max) and maximal pressure fall rate (ndP/dt Max) and
SI Appendix, Fig. S12 for the augmentation pressure (AP) parameter.

The relationship between the subject-averaged values of three
pulse waveform parameters—SPTI, DPTI, and SEVR—and age
was evaluated for both the catheter measurements and the cuff-based
F-ML reconstructions in the test population (subjects = 35) (Fig. 6).
Subjects were divided into four age quartiles (Q1 to Q4) to create
roughly equal-sized groups: Q1 (subjects = 9, ages 48 to 65), Q2
(subjects = 7, ages 66 to 70), Q3 (subjects = 12, ages 71 to 73), and
Q4 (subjects = 7, ages 74 to 82). No statistically significant differ-
ence was observed between the true and cuff-based F-ML values
for all parameters—SPTI, DPTI, and SEVR—across all age groups.
SPTI and DPTI did not show a significant change with age for
both the true and F-ML values. SEVR decreased with age for both
the true values (P < 0.05) and the F-ML values (P < 0.05). As a
reference, SI Appendix, Fig. S13 shows the scatter plots for the SPTT,
DPTI, and SEVR parameters from the catheter recording with age
for all subjects in the study (subjects = 115).

Discussion

Central BP has been increasingly recognized as a superior predictor
of cardiovascular risk and prognostic outcomes compared to
peripheral BP (2, 28). Additionally, growing evidence highlights

the greater clinical value of central pressure waveform shape, which

PNAS 2025 Vol.122 No.9 2416006122

contains more prognostic information than peripheral waveforms
(29-31). This study aimed to develop and validate a method for
accurate reconstruction of the central aortic pressure waveform to
enable precise PWA. We introduce a machine learning—based
approach that leverages nonlinear mapping in the frequency
domain to transfer a brachial calibrated waveform into its central
aortic counterpart. Unlike traditional methods, our nonlinear
mapping accounts for complex wave interactions and distortions
that occur as waveforms travel through the cardiovascular system.
As demonstrated in Figs. 2 and 3, our method accurately captures
central waveform morphology and dynamic fluctuations from a
noninvasive brachial measurement—an essential foundation for
reliable PWA.

In evaluating the clinical applicability of the proposed approach,
we assessed the accuracy of PWA using the F-ML reconstructed
waveforms compared to catheter measurements (Fig. 5). This anal-
ysis focused on a comprehensive set of clinically relevant param-
eters that characterize various aspects of the pressure waveform.
The area-based features, including SPTT (a measure of myocardial
oxygen demand), DPTT (a measure of subendocardial blood sup-
ply), and SEVR (a measure of myocardial oxygen supply and
demand), demonstrated strong prediction accuracy. Similarly, the
shape-based features of Form Factor (the normalized mean of the
waveform) and Alx (a measure of wave reflection), and peak time
(time to maximal systolic pressure), also exhibited robust predic-
tive performance. Furthermore, parameters characterizing the
dicrotic notch, such as Notch Time (a measure of left ventricular
ejection duration) and Notch Value (pressure at end-systole),
showed strong correlations with the invasive catheter measure-
ments. Lower prediction performance was observed on the
slope-based parameters of dP/dt Max and ndP/dt Max (indirect
measures of contractility); this is visible in the Bland—Altman plots
in SI Appendix, Fig. S11 as well as in the first derivative signal in
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Table 1. Measurement statistics for central blood
pressure predictions using the GTF and F-ML methods
compared to catheter values in the test population
(subjects = 35, waveforms = 994)

Variables GTF F-ML
SBP

Coefficient of determination (R?) 0.76 0.83
Correlation coefficient (r) 0.89 0.91
RMSE (mmHg) 10.0 8.5
Limit of agreement (mmHg) 38.6 334
Mean difference (mmHg) 1.7 -0.3
DBP

Coefficient of determination (R?) 0.27 0.58
Correlation coefficient (r) 0.77 0.76
RMSE (mmHg) 8.3 6.3
Limit of agreement (mmHg) 253 24.6
Mean difference (mmHg) -5.2 -0.7
MAP

Coefficient of determination (R?) 0.67 0.76
Correlation coefficient (r) 0.84 0.87
RMSE (mmHg) 6.9 5.9
Limit of agreement (mmHg) 26.7 23.2
Mean difference (mmHg) -1.3 -0.3

Metrics are calculated using sample weights to ensure equal contribution from all subjects
in the test population. Bolded values are used to indicate better performance between the
GTF and F-ML methods.

SI Appendix, Figs. S6 and S7. A slight underestimation in the
F-ML measurements of the dP/dt Max (11.4% of full variable
range) and ndP/dt Max (16.3% of full variable range) was
observed. Intrinsically, both parameters reflect the fastest pressure
changes within the cardiac cycle, which correspond to the higher
frequency components in the waveform’s frequency decomposi-
tion. Higher frequencies are more susceptible to attenuation dur-
ing typical smoothing or filtering processes, making them
inherently more difficult to predict. As a result, they experience
the most significant penalization during the training and predic-
tion phases. Overall, clinical implementation of PWA from the
reconstructed central pressure waveform relies on the fidelity of
the prediction, and these results are a first step toward this goal.
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To fully appreciate the significance of the enhanced recon-
structed waveform fidelity from the cuff-based F-ML method, it
is worth discussing the underlying mechanisms of this approach
and contrasting it with conventional GTE. The GTF method
transforms the peripheral waveform to the central waveform
through a linear scaling of the Fourier harmonic amplitudes in
the frequency space (16, 17). The GTF method was originally
reported to be accurate in prediction of the central aortic BP
values but required higher fidelity reconstruction for PWA (16,
17). However, this sufficed, as predominantly the central BP val-
ues estimated from the noninvasive measurement were used as
risk factors for CVD (2). In contrast, the F-ML method employs
a support vector regression architecture, utilizing a subset of the
frequency content from the peripheral waveform as input to pre-
dict each of the central Fourier harmonic amplitudes (23). Both
methods operate within the frequency domain, but while the
GTF method employs a one-to-one mapping, the F-ML method
utilizes a many-to-one mapping, introducing nonlinearities in
the response. At a physiological level, the cardiovascular pulse
waveform shape is generated by a complex mechanism of forward
and reflected propagating waves within the arterial system (32).
Therefore, a nonlinear transformation is expected to offer
enhanced explanatory power, especially for higher-frequency
components, while maintaining generalizability. The high fidelity
of F-ML reconstructed aortic pressure waveforms presents an
exciting opportunity for future research, such as utilizing the
predicted waveforms in mechanistic models to explore the under-
lying processes driving waveform morphology changes, offering
further insight into cardiovascular dynamics. With the increasing
applicability of PWA for diagnostic purposes, there has been a
growing need for more accurate prediction of the central wave-
form contour.

While several methods, such as the time-domain model-based
approach proposed by Stergiopulos et al. (19) and the adaptive
transfer function developed by Gao et al. (18), have been sug-
gested to address the suboptimal fidelity of the reconstructed
waveform morphology with GTF, this method remains the stand-
ard. Therefore, for our clinical evaluation of the F-ML method,
we compared it against GTE The F-ML approach aligns with
current trends in the cardiovascular community, which leverage
machine learning for health assessments (33). Our analysis of the
predicted central waveforms’ pressure—time signal and first deriv-
ative corroborates the arguments discussed earlier, demonstrating
a significant quantitative improvement in fidelity compared to
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Fig. 4. Comparison of HTN prediction using a confusion matrix for brachial cuff pressure values and F-ML-derived values in the test population (n = 35 subjects).
(A and B) compare the true HTN classification obtained from the invasive catheter in the ascending aorta with the HTN classification values derived from the
brachial cuff oscillometric pressure measurement and the F-ML reconstruction of the aortic pressure waveform, respectively. HTN is defined as SBP > 130

mmHg and/or DBP = 80 mmHg.
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Fig. 5. Assessment of pulse waveform feature prediction accuracy from the F-ML method against the true values from the invasive catheter on individual
waveforms in the test population (subjects = 35, waveforms = 994). Prediction accuracy is evaluated using the actual-versus-predicted plots (Top) and the Bland-
Altman plots (Bottom). Eight different features are presented: (A) SPTI in mmHg s; (B) DPTI in mmHg s; (C) SEVR, dimensionless; (D) form factor, dimensionless;
(E) augmentation index (AlX) in %; (F) peak time in milliseconds; (G) notch time in milliseconds; and (H) notch value in mmHg. The Pearson correlation coefficient
(r) and corresponding P-value are provided for the true-versus-predicted plots. The mean (solid line) and limits of agreement (dashed lines) are shown on the

Bland-Altman plots.

its benchmark (Fig. 3 and SI Appendix, Figs. S5-S7). The F-ML
method places a stronger emphasis on high-frequency compo-
nents, which are responsible for capturing waveform shape during
rapid pressure transitions such as the systolic peak, diastolic dip,
and dicrotic notch, all of which hold significant physiological
importance. Notably, prediction accuracy enhancements in SBP
and DBP were observed with the F-ML method, as these values
are directly dependent on the shape of the pressure transitions.
Specifically, the F-ML method exhibited a significant prediction
improvement for DBP values (Table 1). This advancement
is likely attributable to the enhanced prediction of the

PNAS 2025 Vol.122 No.9 2416006122

pressure—time signal around the diastolic dip, which is character-
ized by a rapid and sudden pressure transition from the opening
of the aortic valve. Conversely, MAP shows only moderate improve-
ment as this value is mainly determined by the low-frequency
components.

BP values (SBP and DBP) from brachial cuff oscillometric
measurements and noninvasively calibrated F-ML waveforms
were compared to aortic catheter measurements for HTN classi-
fication. The F-ML method demonstrated higher accuracy (86%)
compared to the brachial cuff measurements (69%), which is
attributable to the lower false positive rate for the F-ML method
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Fig. 6. The SPTI, DPTI, and SEVR as a function of measurement method and age on the test population (n = 35 subjects). (A-C) show the SPTI, DPTI, and SEVR
as a function of age, grouped in quartile ranges, respectively. The red columns are the true values measured using the invasive catheter, and the blue columns

are the parameters derived from the cuff with the F-ML method.

(22%) compared to the brachial cuff BP measurements (48%).
This difference can be rationalized from pulse pressure amplifica-
tion—a phenomenon where pressure waves increase in amplitude
as they travel from the aorta to the brachial artery, causing
patient-specific increases in SBP values (10). By accounting for
these central-to-peripheral waveform changes, the F-ML method
offers a more accurate assessment of central HTN. While nonin-
vasive calibration methods typically yield less accurate results than
invasive techniques, the practical risks associated with invasive
measurements pose significant clinical limitations (34). This
underscores the importance of advancing fully noninvasive BP
estimation methods. By emphasizing higher frequency compo-
nents and accounting for system nonlinearities, the F-ML method
achieves measurable improvements in clinical waveform recon-
struction. Furthermore, its adaptability across brachial cuff-based
devices, relying only on consistent signal relationships and proper
calibration, highlights its broad applicability for noninvasive pres-
sure assessments. Implementing the F-ML method for central
PWA in clinical practice requires training the model on paired
peripheral (input) and central (output) waveforms to learn the
nonlinear mapping between the measurement and target loca-
tions. This could follow the approach used in this manuscript,
which utilizes a comprehensive dataset of simultaneously meas-
ured waveforms. If invasive measurements are unavailable, com-
putational models could be used to generate the target data,
allowing the model to be trained with noninvasive (input) meas-
urements (35, 36). Once trained, the F-ML model can then be
applied to populations with general characteristics similar to those
of the training cohort.

The cuff-based F-ML method was applied to study age-based
trends in central pulse waveform parameters, focusing on SPTT,
DPTI, and SEVR. Neither SPT1, a measure of myocardial oxygen
demand, nor DPTI, a measure of subendocardial blood supply,
showed statistically significant age-based trends. However, SEVR,
a measure of myocardial oxygen supply and demand, decreased
with age for both the true catheter values and the cuff-based F-ML
values, with statistically significant results (P < 0.05). These find-
ings are consistent with existing literature indicating a decline in
SEVR with age (37, 38). Hayward etal. (39) also observed a
gender-specific decrease in SEVR with age, noting this trend exclu-
sively among women. SEVR is an important cardiac metric asso-
ciated with increased cardiovascular disease risk and can be used
to assess coronary microcirculation in essential hypertensives (38,
40, 41). This invasive study further confirms the age-related
decrease in the SEVR, as measured invasively with a catheter in
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the ascending aorta, and highlights the ability to noninvasively
measure this index using a brachial cuff.

The study’s major limitation is the exclusive recruitment of
subjects referred for left heart catheterization, which may intro-
duce a selection bias. The population exhibits a prevalence of
severe cardiovascular conditions, advanced age with limited vari-
ability, and a high burden of comorbidities. Consequently, this
sample is not representative of the general population, potentially
limiting the applicability of these specific results. However, this
concern is mitigated by the previous validation of the F-ML
method on a large heterogenous cohort (23). Furthermore, the
robust outcomes observed within this highly diseased population
are encouraging, as these cases typically represent more complex
scenarios. Future studies should aim to explore the applicability
of cuff-based F-ML among diseased populations, addressing the
question of whether a single model can adequately generalize
across different conditions and cohorts.

In this invasive study, we showed that the cuff-based F-ML
approach is an accurate and precise method for central hemody-
namic assessment from a peripheral measurement site with nonin-
vasive calibration. The developed method successfully reconstructed
both individual waveforms and the continuous pressure—time sig-
nal, capturing magnitude and breathing-induced BP fluctuations,
as measured with an invasive aortic catheter. Application of PWA
to the central waveforms reconstructed with cuff-based F-ML
extracted clinical parameters that showed strong agreement with
those measured from the invasive catheter. Furthermore,
population-wide trends in SPTI, DPTI, and SEVR parameters
showed consistent age-dependent behaviors between the cuff-based
F-ML and catheter measurements; in particular, the SEVR param-
eter which is indicative of the subendocardial oxygen supply—
demand ratio decreased with age. Overall, our results demonstrate
the feasibility of aortic pressure waveform reconstruction through
the cuff-based F-ML approach with noninvasive calibration and its
applicability in providing an accurate noninvasive assessment of
central hemodynamics.

Materials and Methods

study Design. This study recruited subjects scheduled for cardiac catheteriza-
tion between September 2021 and September 2022.The main inclusion criteria
included age greater than 21y, referral for nonemergent left heart catheteriza-
tion, and ability to participate in all study evaluations. Study exclusion criteria
included occurrence of a severe cardiac event within a week of catheterization,
inability to obtain a brachial BP measurement, and contraindication to cardiac
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catheterization by judgment of the interventional cardiologist. The protocol and
analysis were conducted in accordance with the guidelines outlined by Sharman
etal.(42)forvalidating noninvasive central BP devices. This cross-sectional study
followed the STROBE statement guidelines, a completed checklist is reported in
Sl Appendix, Fig. S1.

The study was approved by Western and Salus International Review Boards.
Participants provided written informed consent before the procedure. The study
was conducted in accordance with the principles outlined in the Declaration of
Helsinki.The following health centers participated in the study: Princeton Baptist,
AL; LSU Health Sciences Center, CA; Long Beach Memorial Care Hospital System,
CA; Orange Coast Memorial Care Hospital, CA; and Saddleback Memorial Care
Hospital System, CA.

Study Devices. The study consisted of simultaneous recordings of invasive aortic
catheterizations and noninvasive pulse waveform acquisition with brachial cuff
devices. The study necessitated cuff placement on the subject’s leftarm in accord-
ance with standard cuff-placement guidelines. Cardiac catheterization was con-
ducted using either femoral or radial access; for the radial artery, catheter access
was limited to the right radial site. To minimize potential hydrostatic pressure
differences between these independent measurement modalities, simultane-
ous measurements were performed in the supine position, with the left arm
positioned adjacent to mid-chest height.

This study utilized the Millar Mikro-Cath pressure catheter, a single-use, solid-
state device. The catheter was zeroed before insertion at the access sites, and the
accuracy of the zeroing was manually confirmed in the recorded signal prior to
analysis. Solid-state catheters are less sensitive to positional changes, reducing the
influence of hydrostatic pressure variations. In the measurement range from —50
to 300 mmHg, the Mikro-Cath has a reported accuracy of 1% of reading from
—50 to 50 mmHg and 3% of reading from 50 to 300 mmHg. The brachial cuff
device used in this study is an investigational device for high-resolution noninva-
sive pulse waveform acquisition developed and validated by Tamborini and Gharib
(26, 43-45).The apparatus consisted of a noninvasive BP module (NIBP 2020 UP)
equipped with oscillometric BP capabilities and tourniquet mode, complemented
by a custom pneumatic system designed for pulse waveform capture. The system
uses a cuff designed for arm circumferences from 22 cm to 42 cm. The device was
configured to execute a BP measurement used for calibration purposes followed by
tourniquet mode using the inflate-and-hold approach. By default, the oscillometric
BP measurement is configured in inflation mode, and resorts to a deflation-based
measurement only upon measurement failure. Pulse waveform acquisition using
the inflate-and-hold approach was conducted at the suprasystolic pressure (sSBP),
defined as the SBP plus an additional 35 mmHg. The sSBP level ensures that the
cuff remains above the systolic threshold, fully occluding arterial flow, and has
been shown to closely represent the true pressure waveform (26). The waveform
measurement was conducted for a duration of 40 s. The full measurement had an
approximate start-to-end duration of 140 5. The oscillometric pressure measurement
has a manufacturer-reported accuracy of + 3 mmHg or 2%, whichever is greater,
within the operating range, and has a pressure transducer accuracy of = 1 mmHg.
Data were acquired at a sampling rate of 1 kHz.

Noninvasively captured brachial pressure waveforms accurately represent
the true pressure waveform shape but are measured in nonphysiological units
(i.e., uncalibrated). Calibration is then performed to scale the waveforms to
true physiological values, reflecting SBP and DBP. Calibration of the nonin-
vasive waveforms was performed using noninvasive BP values from the bra-
chial cuff oscillometric measurements, as commonly used in routine clinical
practice. The SBP and DBP values from the brachial cuff oscillometric reading
are corrected using previously validated relationships and applied to define
the peak (SBP) and base (DBP) of each cardiac cycle (26). BP fluctuations
were introduced using the envelope function dynamic calibration method,
which was previously described and validated by Tamborini and Gharib (26).
This method exploits the patient-specific envelope function, which relates
the pulse amplitude in the cuff to the nominal cuff pressure typically used
for oscillometric measurement. The pressure fluctuation is measured by the
deviation of the current cardiac cycle's cuff pressure amplitude at a nominal
cuff pressure from the established envelope function. The SBP and DBP values
from the cuff are then adjusted for each cardiac cycle to reflect breathing-
induced pressure fluctuations.

PNAS 2025 Vol.122 No.9 2416006122

Data Preprocessing. Data quality control was applied to exclude measure-
ments affected by cuff or catheter malfunction, measurement errors, signal
saturation, irregular heart rate, poor signal quality, or algorithmic failures. This
process involved a detailed inspection of the raw data from both modalities. For
the catheter, proper zeroing was ensured to minimize hydrostatic effects, and
measurements with positioning discrepancies or drift were excluded. For the
cuff, special attention was given to identifying inconsistencies in the oscillometric
technique, such as movementartifacts orimproper placement. Additionally, both
modalities were checked for signal distortion, particularly during large pressure
variations, and measurements from patients with irregular heart rates or unstable
hemodynamics were flagged and excluded to prevent misrepresentation.

Simultaneous aortic catheter and brachial cuff pressure recordings were pre-
processed for model training and testing. Pressure-time waveforms were seg-
mented into cardiac cycles, indexed from the foot of the waveform, defined as the
local minimum preceding the systolic pressure rise. Cardiac cycles were retained
only if they met validity criteria, including appropriate signal length, accurate
indexing of all cardinal points (e.g., foot, peak, and dicrotic notch), and correct
placement of these indexes by the algorithm. Only cardiac cycles satisfying these
criteria for both aortic and brachial waveforms were included and appended to a
shared dataframe. Valid cycles were transformed to the frequency domain using
the Fast Fourier Transform (FFT), with only the first 20 Fourier modes retained for
analysis. Features were normalized to the [0,1] range with parameters fitted on
the training set and applied to the testing set. Noisy or incomplete data were
excluded to ensure high-quality inputs for modeling.

F-ML Method. The F-ML method is a well-established method to transfer the
peripheral pressure waveform to the central site and its working principle has
been shown in a large heterogeneous population cohort (23). The F-ML method
implemented in this study uses Support Vector Regression for the reconstruction
of the central pressure waveform (46). The model input are the first 20 modes
from the Fourier decomposition of the peripheral pressure waveform; the model
output are the first 20 modes of the estimated central pressure waveform. It has
been shown the first 20 modes are sufficient to fully reconstruct the cardiovascu-
lar pulse waveform (23). Central waveform reconstruction involves applying the
inverse Fourier transform to the predicted modes and adjusting for the length of
the cardiac cycle. Modelfitting is strictly performed on the training set, and model
evaluation is exclusively performed on the testing set. Further details regarding
the method are in S/ Appendix, Supporting Text 1. Validation of the F-MLmethod
was performed using the invasive aortic catheter pressure recording as the gold
standard.

Improvements of the F-MLmethod were evaluated in comparison to the con-
ventional method for central pressure waveform reconstruction from peripheral
measurements, the GTF method (16, 17). The GTF for this study population is
computed on a weighted average of the individual transfer functions obtained
from each pair of central and brachial pulse waveforms from the training samples.
The weighing is computed to ensure each subject gives the same contribution in
the GTF, irrespective of the number of cardiac cycles in the dataset. Individualized
transfer functions are computed over bins of size 1 Hz. Evaluation is performed
on the testing samples.

Continuous pressure time signal reconstructions of the central aortic wave-
forms, for both the F-ML and GTF methods, were generated by sequentially
processing and concatenating individual cardiac cycles in the time domain. To
predict the continuous signal for a set number of waveforms, the Fourier modes
for each individual waveform were provided as separate inputs. The methods
predicted the output modes for each waveform independently, which were then
transformed into the time domain and concatenated sequentially to reconstruct
the continuous pressure waveform.

statistical Analyses. Data splitting for training and testing is performed at the
subject level such that no cardiac cycles from a subject are in both sets. A 70%
train and 30% test size are used. Within these sets, all individuals had at least
five consecutive valid simultaneous cuff and catheter cardiac cycles. Method eval-
uation was performed for each subject on the continuous pressure-time signal
reconstruction as well as the individual cardiac cycle level. The analysis of the
reconstructed continuous pressure-time signal involved two assessments: the
average amplitude of SBP fluctuations during the breathing cycle and the RMSE
of the waveform across the sSBP recording. For each participant, the average

https://doi.org/10.1073/pnas.2416006122 9 of 11


http://www.pnas.org/lookup/doi/10.1073/pnas.2416006122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2416006122#supplementary-materials

Downloaded from https://www.pnas.org by 172.222.129.1 on February 26, 2025 from |P address 172.222.129.1.

10 of 11

and SD of the RMSE were juxtaposed to investigate the correlation between the
variability of errors and their magnitudes, as represented by the COV.

We evaluated the accuracy of F-MLand GTF in estimating SBP, DBP, and MAP.
SBP was defined as the peak pressure of the waveform, DBP as the minimum
pressure in diastole, and MAP as the average pressure of the waveform. Our
analysis compared BP values derived from F-MLand GTF for individual cardiac
cycles with those invasively measured using a catheter in the ascending aorta of
the simultaneous cardiac cycle. Evaluation metrics included the Pearson corre-
lation coefficient (r) to measure the degree of linear association, the coefficient
of determination (R?) to assess the prediction accuracy against true values, the
RMSE to quantify the error, the bias with limits of agreement; all metrics were
weight-adjusted to give equal importance to all subjects regardless of number
of cardiac cycles. Brachial cuff oscillometric measurement values, F-ML derived
values, and catheter values of subject-averaged SBP and DBP were used to
identify cases of HTN using the guidelines reference values (SBP = 130 and/
or DBP > 80) (47). Classification analysis for HTN included accuracy, sensitivity,
and specificity.

We evaluated the morphological reconstruction error of F-ML and GTF wave-
forms for the pressure-time signal and its firstand second derivatives. Evaluation
was performed using nRMSE across the cardiac cycle, where normalization was
applied by the pulse pressure amplitude of the true signal. Reconstructed wave-
forms were compared against invasive waveforms measured with a catheter in
the ascending aorta during the same cardiac cycle. Signal derivatives were cal-
culated using discrete differentiation and Savitzky-Golay filtering. A shuffle split
analysis with 15 subject-level splits was performed on the entire study population
to evaluate the consistency and generalizability of the F-ML methodology. The
model was retrained for each split, and the predicted waveforms were assessed
foraccuracy in both waveform morphology and BP values prediction.
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